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queatly, s substantial portion of the total computational-work and sorage required to solve v
wtift IVPs is devoted to solving these linear algebraic systems, particularly if the systems are
large. Over the past decade, several cfficient iterative methods have beea developed to soive
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Iarge spene (nonsymmetric) systems of linear algebraic equations. We study the use of a class
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of these iterative methods in codes for stiff IVPs. Ous theoretical estimates and preliminary

sumerical results show that the use of iterative linear-equation solvers in stiff-ODE codes
improves the efficiency - in terms of both computationsl-work and storage - with which a
significant class of stiff [VPs having large sparse Jacobians can be solved.
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L Intredmction.

As Gear [33, 36] and many others have noted, a2 major opea problems in scieatific com-
puting is the cfficient solution of large systems of stiff initial-value probiems (IVPs) for ordi-
ary differeatial equations (ODEs) of the form

{OLTTO NETC EEN a1
These problems arise either directly in models of physical systems (such as chemical kinetics or
electrical setworks) or indirectly as & step in the solution of another problem (such as the
application of the method-of-lines to a system of parabolic partial differential equations [59].
Cousequently, the efficieat solution of large systems of stiff IVPs is of great practical impor-
tance.

Although several authors have investigated techniques for avoiding implicitness in the
sumerical solution of stift [VPs, most workers in the fleld still agrec with Stetter’s comment
[79] that "ail ressonable methods for stiff systems of ODEs have to be implicit®, except, possi-
bly, for special classes of problems. That is, 8 system of linear or soglinear sigebraic equs-
tions must be solved at each step of the numerical integration. Moreover, it secems that a
Newton-fike method must be used to solve the noanlincar systems to avoid a severe restriction
oo the stepsize. Consequeatly, large systems of linear equations must be solved in this case as
well.

As we explain in more detail in {4, frequently a substantial portion of the total
computational-work and storage required to solve large systems of stiff [VPs is devoted to
solving systems of linesr algebraic equations. Therefore, any improvement in the efficicncy
with which these linear systems are solved will directly improve ths performance of the
integrator. Fortunstely, the linear algebraic systems that arise in large systems of stiff [VPs
are usually sparse and this property cas be exploited to great advantage.

Ower the past decade, several efficient iterative methods have been developed to solve
largs sparse systems of linear algedraic equations. Ths Krylov subspace methods, of which the
conjugate gradient metbod [43] is a well-know example, have provea to be particularly
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effective for solving the linear systems that ariss in the numerical solution of elliptic and pers-
bolic partial diffcreatial equations. (See, for example, (2, 19, 13, 14, 16, 17, 24, 42, 54, 55, §7,
€0, 61, 68, 69, 70, 81, 83, 86] and the references therein) Therefore, it is nstural to consider
the use of iterative linear-equation solvers in codes for large systems of stiff [VPs for ODEBs
Not only are iterative methods faster than direct saivers for many systems of linear aigebraic
equations, but aiso they require significantly less starage than direct solvers in most cases. In
addition, the use of iterstive methods will case some of the restrictions on the stepsize- and
order-sclection strategies used in stiff-ODE codes; we belicve that this may improve the
efficiency of these codes a3 well.

The outline of the remainder of this peper is as follows. In §2, we review the sumerical
solution of the implicit formulas vsed in many of the most popular tiff-ODE codes, emphasiz-
ing the relationship between the user specified error toleraacs for the IVP and the accuracy
with which the implicit formulas must be solved. We also show that a large clsss of stiff IVPs
have propertics that make the awociated systems of linesr algebraic equations amensbls to
nluﬁmbykmﬁm We thes review the “inexact Newton methods’ in which the
systems of linear equations that arise ig Newton's method are solved spproximately, rather
than cxactly. Aguin, we emphasize the relationship between the accuracy with which the
implicit formalas and ssociated linear algebraic systems must be solved.

In §3, we review iterative lincar-equation soivers with particular emphasis oa two Keylov
subspece methods: ths precomditioned conjugate residual method for symmetric positives
definite systems and preconditioned Orthomin(k) for acnsymmetric positive-real systems.! We

" also point out how these iterative linear-equation solvers can be used ia & s2iff-ODE code that

doss Bot explicitly computs or store the Jacobian amociated with the [VP, and, in particular,
how the linear systems can be precounditioned in this case.

In §4, we develop theoretical estimates of the computational work and storage required

IAM“mAbmm“ulmw(" it and ouly if (2.Ax) > 0 for ol
seastre resl vestons 2. Typieally, the usual Enclidenss inaer-product, (x.y) = 3 x, 7. o wed.
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to solve the spatially-discretized two- and three-dimensional Heat Equation using a stitf-ODE
solver that employs either direct of iterative lincar-equation solvers. In §5, we present numer-
ical results for the solution of the spatially-discretized two- snd three-dimensional Heat and
Coavection-Diffusion Equations a3 well s the 30 Stiff Detest Problems (27, 29] using siff-
ODE solvers based upon cither direct or iterative lincar-equation solvers. Both the theoretical
and numerical resuits look quite promising.

Finally, in §6, we present our conclusions.

This paper complements the work of Miranker and Chern [64], Gear 3ad Saad [37], and
Brown and Hindmarsh [3], who also studied the use of iterative lincar-equation solvers in
#iff-ODE codes. We believe our development of the properties of the linear aigebraic systems
that arise in stiff-ODE solvers that makes these linear systems amenable to solution by itera-
tive linear-equation solvers is new, as is our analysis of the relationship between the three
tolerances required in a stiff-ODE code cmploying an iterative linear-equation solver. In
addition, our theoretical estimates and numerical results extend the work of the authors refer-
caced sbove, and, m particular, show the importance of Mditianing in the solution of
some large systems of stiff [VPs.

Although their point-of-view is distinctly different, the predictor-corrector methods
developed sad analyzed by van der Houwen and Sommeijer [S1] are related to the stiff-ODE
methods discumed in this paper and those referenced in the preceding paragraph.

2. Impileit Formolas.

Many numerical methods have been developed during the past few decades for the solu-
tion of systems of stiff IVPs for ODEs, and this continues to be aa active area of research.
Most of thess methods can be clamsified a8 being in one of thres families: linear muitistep
(multiderivative) methods, implicit Runge-Kutta methods, and extrapolation methods. Of
thess, the linear multistep methods have 30 far proven to be the most successful {27, 29], with
the most widely used codes being DIFSUB (33, 34), GEAR [44), EPISODE {S], sad LSODE
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[48], each of which is based upon the Backward Differentiation Formuias (BDFs) popularized
by Gear [34]. Therefore, in our discussion of implicit formulss below, we concentrate on the
BDFs, sithough much of what we say applies to stiff methods in general.

A k-step BDF for the solution of (1.1) can be written in the form

Ya .3-‘7--1"’ tee "'ﬂbl-t + byBof (ta a)- (203)

Tables of coefficients for these formulas may be found in [34). To advance the numerical

solution from 5,y 10 1, = 14y + &,, (20.1) is solved for the approximation y, to y(r,) using

the previously computed spproximations {y,-¢}. Because (2.0.) is implicit in y,, an equation
of the form

FOu)=Ya = hePuf (tays) +¢4 =0 (202)

must be solved at each step of the integration, where ¢, contains the terms in (2.0.1) that do

aot depend upor y,.

2.1. Accursey m tor (2.8.2).

In general, (2.02) is nonlinear and cannot be soived exactly. Shampine [73, 74] discusses
accuracy requirements for this equation. He notes that most stiff-ODE codes attempt to com-
pute an approximate soiution, j,, to (2.0.2) satisfying

. -5l s cyTOL, ' (211)
where TOL is the user specified error tolerance for the IVP and ¢, is a positive constant (usu-

ally less than 1). Shampine [74] presents & convincing argument that, for s stiff-ODE solver, a
more sppropriate criterion is to accept 7, if

P @Il s ey TOL. (212)
Naot oaly is this criterion more easily related to the accuracy requirement for the IVP, but also

it is dmpler to implement. Furthermore, Shampine gives an intuitive argument that suggests
that, for most stiff prodiems,

b- -’l' = l'(i-)l- . (2-1-3)
However, Houbak, Norsett, and Thomsen [S0] demonstrate that it often takes more computa-

tioaal work to satisfy (2.1.2) thaa (2.1.1) with little or no gain in the accuracy of the numerical
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solution of the amociated IVP. Although we do not address the interesting question of which
of thess stopping criterion is more appropriate in a stiff-ODE solver, we do develop s bound
oa by, ~#.| in terms of IF (7,)] similar to one given by Williams [84], but using & somewhat
differeat (and possibly simpler) derivation. This bound and some of the relations used in its
derivation are important to our discussion of inexact Newton methods and iterstive linear-
equation solvers below.
The validity of (2.13) is intimately related to the stability of the sssociated [VP. Assume
that the IVP satisfies
CCr)-1 Ga)y-2)S Y0 20-2) @19
for all (ty) and (t2) in the domain of interest, where y and 2 are real vectors, v is a real (pos-
sibly aegative) constaat, and (-,’) is & real inner-product. This assumption is frequently made
in studying the noulinear stability of formulss for stiff [VPs as it casures the stability of the
IVP (11) in the following sense. Let y(t) be s solution of (1.1) and let z(t) satisty the same
differential equation but have a different initial value, 2(tq). If (2.1.4) is satisficd in s domain
coutaining both y(t) and 2(t), thea
be)-1)l s ™ Obed-s el @19
whers |-] is the norm associated with the inner-product in (2.1.4). We say that the IVP is dis-
sipative if and oaly if y < 0. In this case, the IVP is ssymptotically stable in the sense that
the distance between y(1) and any neighbouring solution of the differential equation, z(t),
decreases exponentially with t.
Inequality (2.1.4) can aiso be used to bound fy, -, ] in terms of }F (7,)]. Assume that
(214) bolds at ¢ = ¢, in & domasin containing both y, and j,. By (202) and (2.14),
A-AB 7)1 y-2) S (F)-F i)y ~2) @1.6)
Heace, if 1-4,8,v > 0, thea, by (2.1.6) and the Cauchy-Schwarts inequality,

1
1=hPay

b-sls ro)-ri)l

Takiag y wy, sad 3 =, , we get

PRUD. < -t
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batul s i ronl, @17
from which it follows that, if ¥ < 0, thea (2.1.3) holds for any &, > O, since A, > O for the
BDFs. Note also that, if 1-A,8,y > 0, then (2.1.7) ensures that any solution of F(y,) =0 is
unique in the domain for which (2.1.4) holds. Moreover, if (2.1.4) holds at ¢ =7, for all real
vectors y and 2 and if 1-A, B,y > 0, then, by the Uniform Monotonicity Theorem [67], the
uaique solution of F (y,) = 0 exists.

Now we consider in more detail for which clam of stiff [VPs we can expect tincondition
1-A,B,7 > O to hold throughout the course of the numerical integration. First, note that, if
the Jacobisa f,(s.y) cxists and is continuous, thea the algebraically smallest y for which
(214) holds is

where the maximum is taken over all nonzero real vectors v and all (t,y) in the domain of
interest. Heace, F,(7,) = I ~haBuf, (fa.2,) s positive-real if 1-4, 8,7 > 0.
.ltise-ytoahwnm
. max{Re(A):) ancigenvalue of f,(ty)} S v, .
where Re()) is the real part of A. If £,(s,y) is symmetric, thea equality holds in the last ine-
quality, but, if f,(¢.y) is nonsymmetric, then the inequality may be strict, as the example
below demounstrates. However, the proof of Theorem 1 of [39] can be adapted casily to show
that, for any Ozed (t.y) and amy ¢« > 0, there cxists a real inner-product and an associated ¥y
stisfying (2.18) for which
v-c«s max{Re()):\ encigenvalue of £,(t 7))} = v. (2.19)
For IVP baving s symmetric Jacobiaa, it is quite reasonabie to expect 1-A, 8,7y > 0. In
fact, for a large subclam of thess problems, all the cigeavalues of the Jacobian f,(1y) are
soapositive, from which it follows that ¥ < 0, wheace 1-A B,y = 1, since 4,8, > 0. Thus,
(2.13) boids. On the other band, if y > O, then the Jacodian must have a positive cigeavalue
srbitrarily closs to y in the domain on interest. Counscqueatly, the differeatial equation has

I}
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solutions whose componeats may grow like ¢¥ in & ncighbourhood of the solution of the IVP.
Heace, it is reasonable to expect s stiff-ODE solver to choose a stepsize A, for which
1-4, B,y > 0 to coatrol the accuracy in the poteatially growing components of the sclution.
In fact, if ¥ > 0, one would expect 1-4,B,v to be close to 1, at least if the error tolerance is
wmfficiently stringeat. Moreover, the numerical solution of (2.02) requires that F,(y,) be
‘aumerically’ nonsingular. This cffectively ecasures that 1-A, B,y > 0, provided that 4,8,
changes by small increments, since this inequality hoids initially for &, sufficiently small and,
& 1-A,p,7 is ementially the aigebraically smallest eigenvalue of Fy(y,) =1-8,Bsf ,(ta Ja)s
1-A,B,v can aever spproach or pass through 2ero. Thus, for [VPs having a symmetric Jaco-
bian, it is reasonable to expect that F,(y,) will be positive-definite and (2.1.7) will bold in the
event that (2.1.3) does not.

If the Jacobian f,(¢.y) is nousymmetric, thea the assumption that 1-h,B,v > 0 is some-
what more problematic, since, for a given inner-product, the associated y given by (2.1.8) may
be much larger than the real part of any of the eigeavalues of f,{(s,y). For example, consider
the differential equation y° = Ay, where 7

4= [ %)

The cigeavalues of A are both -1, but, for the usual Eucfidean inner-product,

1-m%‘:—'i)- = =14+|a]
can be arbitrarily largs even though the cigenvalues of A sre fixed. In particular, if [a| > 1,
thea A is not acgative-real. Moreover, if s stiff-ODE solver is rsed to integrate y* = Ay over
s loag time interval with sbsolute error coatrol, the numerical solution will decay exponea-
tially cutside of an initial transieat region and A, will become large. Hence, for large ¢, it is
ressoasble to expect that 1-A B,y << 0 and F,(y,) =1 - A,B,A will not be positive-real.

Furthermore, for the usual Euclidean norm, the smallest constant ¢ that ensures that

b-slsc IFO)-FO)I
is J( A, Bea)™'], which may be larger than VEG/2Z7. Thus, for large s, the residual is not a

good estimate of the error for this problem in the usual Euclidean norm. This is not to sy
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that, for the usual Euclidean inner-product and afl [VPs having nonsymmetric Jacobians, the
condition 1-A, 8,y > 0 will be violated and F,(y,) will aot be positive-real or that the resi-
dual will be a poor estimate of the crror in (2.0.2), but this is the case for some problems.

On the other hand, even if the Jacodian £, (s, s ) is nonsymmetric, by an argumeant simi-
lar to the one used in the symmetric case, it follows that it is reasonable to expect that the
stepsize, A,, in & stiff-ODE solver will be restricted by accuracy considerations to the exteat
thai 1-A,BRe(A) > 0 for all cigeavalues A of f,(faa). In fact, for many stiff [VPs,
Re(A) = 0 for all the cigeavalues of £, (s, 7,), wheace 1-A,B,Re(A) = 1 without sny restric-
tioa on the stepsize A,. In any eveut, if 1-A,8,Re(d) > 0 for all cigeavalues A of £, (s, 7s),
thea, by (2.1.9), there exists a real inner-product with respect to which F,(y,) is positive-real,
aitbough this inner-product may depend upon (2, y.)- For example, for the matrix A above, if
we use the real inper-product (xy)r = (x.Ty), where T = diag(3%,1) aad (-,) is usual
Euclidean inner-product, thea |

(z Ax)y
(=)

which, for 8§ = ¢/a, is within ¢ of -1. Hence, for 0< 3 < -';1-'. A is negative-real, whence

¥ = max = =1+ la8]

1=k B, A is positive-real with respect to the (-,)y inner-product for any &, > 0. Although
these observations may aot be of any pnc:ial- importance in the selection of aa error control
strategy for s stiff-ODE molver, we belicve that they may be of significance for the implemen-
tation of iterstive linear-equation solvers, as will becomse evident in §3. Moreover, as we
explain in that section, the iterative solvers that we consider are guaranteed to coanverge if

- Fy(y,) is positive-real, but may break-down otherwise. Hence, their break-down gives 2 warn-

ing that inequality (2.1.7) is violsted.

3.3. Numerical Selatien of (2.0.2).

For noustiff-ODE solvers, it is common to use functional iteration to solve (202) or to
employ sa implicit formaula, such as (20.1), as the corrector in s'ptedietmct method.
However, for stiff-ODE solvers, the wse of ecither of thess techniques severely restricts the




s e -

stepsize and it is exactly this fype of restriction that must be avoided for stiff problems.
Therefore, in most stiff-ODE solvers, a chord-Newton method is used to solve (202) at each
step in the integration. That is, given an initisl approximation y. to the solution y, of (2.02),
the system of linear equations

Wan "' -y) +FO) =0 (223)
is solved repestedly until ar acceptable approxzimation y2 is computed, where W! is an approxi-
mation to the Newton iteration matrix

Fy00) =1 -kBof (0 02)- 222)
Frequeatly, W2 is just the Newton iteration matrix retained from an earlier iteration on the
current or a previous step. Of course, if (1.1) is linear sad the exact Newton iteration matrix
(222) is used st each step, then (22.1) gives the solution to (2.02) ia one iteration.

With the exception of GEARBI [47), all the “production’ codes for stiff IVPs known to
the authors employ direct methods to solve the system of lincar algebraic equations (22.1).
For example, GEAR, EPISODE, and LSODE cach use Gaussian Elimination (GE) with par-
tial pivoting, while DIFS}JB computes the inverse of W2 explicitly. For large systems of stiff
IVPs, great savings in both time and storage can be achicved by taking advantage of the spar-
sity of the Jacobian. This obscrvation lead to the development of codss that employ either
banded GE (such as GEARB [45), GEARIB [46], and LSODE) or sparse GE (such ss GEARS
[77] and LSODES [49)).

Furthermore, much of the consideration in choosing the formulas, strategies, and heuris-
tics in a stiff-ODE solver is directed towards solving (2.02) as efficiently as possible. To this
cad, most stiff methods cvaluate the Jacodbian and refactor W? as seidom as possible, since, a3
explained in more detail in § 4, the cost of these two operations may dominate the computa-
tion. Hence, in most siff-ODE solvers, W) remains unchanged for several consecutive
integration steps.

The desire to avoid refactoring W2 also affects the choice of stepsize- and order-selection
strategics in & stiff-ODE solver. If the stepuize or order is changed from one step to the next,

)
|
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thes ot least cac of the terms A, or B, occurring in the Newton iteration matrix (222) is
changed as well. Therefore, unless W3 is updated and refactored, it msy be a poor spproxims-
tion to (222). As s result, the chord-Newton iteration (22.1) may fail to converge or con-
verge too siowly. (Note that this observation applies to linear as well as nonlinear IVPs.)
Comssquently, the stepsize- and order-selection strategics in most current siff-ODE solvers
are restricted by this consideration. For example, EPISODE changes stepsize and/or order
oaly after s failed step or when it estimates that it can increass its stepsize on the next step by
a factor of at least 13. In sddition to forcing the method to take more steps and function
evaluations to integrate a problem than might otherwise be required, this coastraint oa the
arder- and stepsize-selection strategies reduces the “smoothaess” of the dependence of the
actual error committed by the code in solving a problem on the user specified error tolerance;
it is generally agreed [36] that such “smoothness® is a very desirable property for an ODE
solver to possess.

The choics of variable-stepsize implementation of a multistep formula is siso affected by
the comsideration of how this choice will effect the efficiency of the Newton iterstion. The
two commonly used implementations are the fixed-coefficient implemeatation (FCI) of Nord-
siock [65], which is used in DIFSUB, GEAR, and LSODE, and the variable-coefficient imple-
meutstion (VCI), which is used in EPISODE. For aocastiff problems, both theoretie;l con-
siderations and numerical testing have shown VCI to be superior to FCI for the Adams for-
mulss. (See, for example, [28, 38, 52, 75] and the references therein.)

However, this clear superiority of one implementation over the other for Adams codes
doss a0t extead to siff methods based upon the BDFs. The reason for this seems to be that,
whes VCI is used with a k-step BDF, the coefficieat §, in (22.2) continues to change on ecach
of the k-1 steps following a stepsize change. Therefore, unless W} is updated and refactored
oa each of thess steps, it may be & poor approzimation to the Newton iteration matrix (222).
On the otber hand, FCI does not share this disadvantage, since, for this implementation, B, is
s constaat that depends only upon the formula being used. We belicve that it is primarily for
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this reasom that the aumerical results in [27, 29] indicate that GEAR is more efficient than
EPISODE. On the other hand, the numerical results in [6, 7] suggest that EPISODE is more
robust than GEAR. This empirical observation is supported by the theoretical resuits in [38),
which show that VCI is more stable than FCI for the BDFs. | = [53] for a more detailed dis-
cumion of this topic.)

The cost of solving the implicit equation (2.02) also affects the choice of formulas used
in a stiff-ODE solver. For example, although A-stable for arbitrerily high orders, the classical
implicit Runge-Kutta formulas (IRKFs) [4] suffer the major disadvantage that the implicit sys-
tem of equations associated with an S-stage formuls is S times as large as the corresponding
system (202) for the BDFs.

There has been s considerable effort during the past decade to alleviate some of the
difficulties discussed above associsted with solving aa implicit equation of the form (2.02) at
each step of the integration of a stiff ODE. However, one approach that has hss only receatly
begua to be investigated actively is the use of iterative methods to solve (2.2.1) {3, 37, 64].

For parabolic PDEs, iterative methods have been popular since the early days of comput-
ing: SOR and ADI Bave been used effectively for several decades [80]. More recently, the
conjugste gradient method [2, 16, 17, 55] has received a considerable amount of atteation. We
believe thst the use of iterative methods in stiff-ODE codes should be investigated a3 well. It
sppears that thess methads offer s great potential for reducing the cost - in terms of both
time and storage - of solving large systems of stiff [VPs having sparse Jacobians. Furthermore,
as discumed in more detail below, the use of iterative methods may alleviate some of the con-

straints on the stepsize- and order-selection strategies discussed above.

2.3, [nexact Newtsn Matheds.

To begin, note that the linear equation (22.1) is solved only to obtain an spproximate
solution to the nonlinear equation (2.02): there is no reason why a direct linear-equation
solver must be used in a stiff-ODE code to solve (22.1). Moreover, Sherman [76] and Dembo,

T T T LT T e e
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Eiscostat, and Steihaug [15] show that it is only necessary to approximate the solution of these
linear oquations “sufficieatly accurately” to obtain s quadestic rate of convergence for ths
Newtoa iteration.

More specifically, consider the class of incxact Newton methods [15]. Given an initial
guess 3}, any such method computes a sequence of values {y2) satisfying the recursion

0D 0% ~v) + FODI s w IFODL. (233)
wheremy S n < 1. hmmwdn.wdm&emdkmﬁnwhwwmu

02 *'~y2) satistying (23.1), but, independently of how y2*! is determined, Dembo, Eiseastat,

and Steihaug [15] prove that, if

M FO)=0o,

(2) P is continuously differentiadble in a ncighbourhood of y,,

@) F,0.) is acnsingular, and

@  bl-r.lis sutficiently small,

then y2- y, with a rate of convergence that is at lcast linear. In addition, they show that

(8) ye- yo superlinearly it n = 0,

(®) 73~ y, with strong order at least 14p,0 < p = 1,if ny = O(IF ODP) and F, is Holder
continuous with expoaent p uy..z and

(€) 8~ ys with weak order at least 1+p, 0< p s 1, if F, is Holder continuous with
exponent p at y, aad n, - 0 with weak order at [east 1+p.

Taking p = 1 ia (b), we get that an inexact Newton method may retain the quadratic rate of

convergence characteristic of Newton’s method.

Even though it is not necessary to factor or invert F, (y2) in an inexact Newtoa method,
it is necessary to evaluate the Jacobiaa of the IVP, £, (1,.75), to compute t,(y.‘) on each itera-
ticn. For large problems, the evaluation of the Jacobian may be very expeasive, and,

2 A funsticn g is p sty if cheve axins a constaat L and » neighdourbood N of y

meh that l:(y)g-:‘(:)l = l.b:?r forsllz €N .

LAl 4
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consequently, should be avoided whenever possible. Therefore, we consider the clam of inex-
act chord-Newton methods for which (23.1) is replaced by

] . IWe 0 <ya) + FO = m IF O 232
where, as in the previous subsection, W is an approxzimation to F,(y5). But in this case, if an
iterative method is used to solve (232), there is little sdditional cost associated with using the
curreat valuc of the scalar A, B, in Wi, although the Jacobian may remain unchanged from

one inezact chord-Newton iteration to the next. In any case, the proof of Theorem 2.3 in [15]

can be adapted casily to show that yi- y, linearly for an inexact chord-Newton method if, in
addition to (1)-(4) above, we assume that W, is a good spprozimation to F,(y,) in the sense
that

w2 =F,0)l = ¥ 20d [(W)-F, ()= v,
where v is the constant appearing in the similar inequalities (23) and (2.4), respectively, of
(15].

Like a chord-Newton method, the rate of convergeace of an inexact chord-Newton
method is not superlinear in general. This together with the convergence results quoted above
suggest that an sppropriate choice for n, is a constant n < 1, since (in theory at least) there is
no benefit in allowing v, - 0, as there is for an inexact Newton method, while sllowiag n, - 0
makes the acceptance criterion (232) more stringent and, consequently, more expeasive to
satisfy for an iterative linear-equation solver.

In choosing a value for v, it is useful to note that, in many stiff ODE solvers such as
GEAR, EPISODE, aad LSODE, y! is aormally a very good initial spproximation to y, in the
seass that both Iyl -y, | sad ¥ (7)) are close to TOL, the user specified error toleraace for
the IVP, since y? is computed by an explicit formula of the same order as the implicit correc-
tor. As a result, usuaily only one or two iterstions of (22.1) are required to compute y} satis-
fylag either (21.1) or (212). To avoid an cxcessive number of evaluations of F(y5) whea
using an inexact chord-Newton method to solve (2.02), we also require that, on most steps,
only ogs or two iterstions of (23.2) be used to compute an acceptable y). Furthermore, note

e
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FOR*N) = F,0D02 " -7) + FOR) = W02 + FOb).
Henece, if IF (00| = TOL 1nd we want y.! to satisfy (2.12), thea a reasonabie value for v is

rcy, where r < 1is a positive constant and ¢, is the constant appearing in (2.12). As alterna-
tive is to replace (232) by

2 0a*l=) + PO = re,TOL, 33
since we require only that y} satisfy the acceptancs criterion (2.12) and aot that y? uitimately

coaverges to y, .

Based upon the relationship between lys-7a| and 17 (r2)] developed in §21, it also
scems appropriate to uss cither (232) with n = 7 ¢; or (233) as the acceptance criterion for
sa inemact chord-Newtos method whea the acceptance criterion for the implicit equation
(202) is (2.1.1) rather than (2.12), although the justification is more teauous in this case.
However, our aumerical tests reported iz §3, based upon a modified version of LSODE which
employs LSODE's scceptancs criterion of the form (2.1.1) for (202) and the scceptance cri-
terion (2.33) for the inexact chord-Newton method, show that this heuristic works quite well
in practice.

A stopping criterion of the form (233) for the inexact Newton method is also used by
Brown snd Hindmarsh (3] in their modified version of LSODE. Ia addition, they prave a
result about the iterates y2, which, aithough apparently not tight, suggests that the stopping
criterion (2.33) is appropriats for stiff-ODE solvers.

Finally, we note that the sccuracy of the spprozimation y} to y, affects not oaly the
accuracy and stability of the uaderlying implicit ODE formuia [S8] but also other formulas,
strategies, and heuristics used ia the ODE soiver. For example, in our preliminary aumerical
tests with 8 modified versioa of LSODE, we found that y! =y often stisfied (23.3), particu-
larly om the initial steps of the h;emﬁon. However, accepting y! = »? has a deleterious
effect uposn the code, since the error estimate in LSODE is based upon the difference betweea
v and the accepted y2 and, moreover, the stepsize- and order-selection strategies are based

e —— = s e g e = va—— ———
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upon the magnitude of the error estimate. Hence, the error may be grossly underestimated
and too large a stepeize selected for the next step. We were able to avoid this difficulty in
part by taking —F (y2), rather than 0, as the initial guess for y2*i—y! in the iterative solution
of (233). Morcover, as this initial guess corresponds to the usual corrector in a predictor-
corrector method, it produces a good initial approximation to the nonstiff componeats of
(233). The choice of s good initial guess for y2 *'~y} is discussed in more detail for linear
systems of IVPs in [64], where, in our notation, they consider initial guesses for yX *!—y2 of the
form ~({+A+ - - - +A/)F (y}) where A = 1 -W} and j = 0. However, the effect of the accu-
racy of the approximation y} to y, on the formulas, strategies, and heuristics of an ODE soiver
clearly requires much more study, oot only for methods employing inexact Newton methods,
but also for all methods based upon implicit formulas.

3. Iterstive Linear-Equations Solvers.

In this section, we discuss the choice of iterative methods for solving the systems of
linear equations that arise in inexact chord-Newton methods (2.32). Because these iterative
methods must function as a componeat of a general purpose stiff-ODE solver, it is essential
that they perform effectively for geacral sparse systems of linear equations and are got depen-
dent upon any special matrix propertics such as those, for example, amocisted with the five-
point operator for the two-dimensional Lapiscian. This consideration immediately eliminates
PDE-related methods such as ADI or multi-grid. Moreover, even for the application of the
method-of-lines to parabolic problems, many of these PDE-related methods are uasuitable
because they require specific information about the PDE itself (e.g., grid structure or operator
splittings) which is aot usually available to & general-purpose stiff-ODE solver.

Although the classical iterative methods, such as Jacobi, Gauss-Seidel, and SOR, are not
restricted to PDE-related problems, they may not converge if the linear system is not sym-
metric positive-definite. Moreover, thess methods are often slow when used on their owa and
are, therefore, frequeatly coupled with aa scceleration technique to improve their conver-
geace rats. For czample, the Symmetric SOR (SSOR) method [85] may be accelerated by

é
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cither the Chebyshev semi-iteration method or Richardson's second-order method [40]. One
undesirabie feature of thess acceleration techniques is the need to cstimate parameters to
make them effective. Typically, these parameters depead upon the cigenvalues of the
coefficieat matrix, which are generully not known to the user a priori. However, adaptive
Chsbyshev methods, which sutomatically estimate these parameters, have been developed
receatly [60, 61] for both symmetric and nonsymmetric problems. Thess methods may be par-
ticalarly effective for time dependeat problems, since the coefficient matrix W7 of (232) (and,
hence, the amociated optimal Chebyshev parameters also) change slowly from step to sep
throughout the numerical integration of (1.1). Moreover, the Chebyshev iteration is
guaranteed to converge if the required parameters are chosea “correctty” and if the real part
of each of the cigeavalues of W! is positive. As we argued in the last section, if this last con-
dition is not satisfied, then the m-paize‘h. is almost surely too large and should be reduced
until this condition is satisfied to easure a reliable numerical integration. However, to date
we han oot investigated in depth the use of adaptive Chedbyshev methods in stiff-ODE
solvers.

The Conjugate Gradient (CG) method is powidbly the most well-known cxample of
aaother class of iterative methods that has received considerabie sttention receatly. CG was
originally proposed by Hestenes and Stiefel [43] as 2 direct method, but it was re-introduced
byknid[ﬂ]unhemhcmmodtwﬁgemmduneueqnuim It has proven
to be very effective in the latter role for 2 wide range of probiems arising from, for example,
geophysical spplications [71], elliptic PDEs [10, 11, 13, 14, 72], and time-dependent PDE; (2, 16,
17, 55]. We believe that this class of iterative methods is also suitable for solving the linear
systems thst srise in stiff-ODE solvers. In particular, we consider the Preconditioned Conju-
gate Residual method [10, 24] and ome of its generalizations for nonsymmetric problems,
Proconditioned Orthomin [20, 24, 81]. In the remainder of this section, we give a brief
description of these methods.

Py~
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3.1. The Precenditiensd Conjugats Redcdaal Msthed.
‘ ; Throughout this subsection, let A be a symmetric positive-definite matrix. To soive the
‘ system of linesr equations

Ax =), 313)
the Comjugste Residual (CR) method, like CG, requires only that the user supply a routine to

computs the matrix-vector product Av for any given vector v. Thus, CR can take fuil advan-
tags of the sparuity of A. However, the effectiveness of CR can often be improved dramati-
cally by applying CR to the equivalent preconditioned system

) A =d (12
instead of (3.11), whers A = S~'AS™ is & symmetric positive-definite matriz since A is,
i=S's,0 =37, and Q =SS is “closs’ to A (in & sense to be made more precise below),

but sbstaatially less “expensive” thaa A to invert. We refer to CR applied to (3.12) as the
Preconditionsd Canjugste Residual (PCR) method and Q as the precounditioner.

Oudthmrﬂquivde_ntfmot?cr.isﬁveninﬁms.m. Although any

PR Yy

inser-product caa be used with PCR, the usual Buclidean inner-product is most often used in

prastics.
It Q =1, thea PCR reducss to CR. Both methods require the same amount of storage, but,

for @ » /, PCR requires cue additional soive of the form Qu = v per iteration. Note, though, that
the matrix § amociated with (3.12) is not required explicitly. Also, if @ # 7, only the residual
7, = Q7' (b -Ax,) = Q"'s, is available in this impicmeatation of PCR; if the residual r, for (3.1.1) is

s

required also, then cither one additional matrix-vector product of the form Qu must be computed

ey

per iteration or one sdditionsl vector must be stored.

It is well-known (1, 10] that PCR is an optimal potysomisl-based method in the sease

that the i® iterate 5, computed by PCR minimizes

Vil=Cr)=277) = In lo (313
over the trassiated preconditicaed Krylov subspace

2+ €0 e (@) e .... 0" KUY 2 P> (3.14)




Chooss x4

Set ro = b—Ax,.

Solve QF ¢ = ry.

Set pg = 7y

FOR i=0 STEP 1 UNTIL coavergence DO
Solve Qg; = Ap;.
& = A% Bo)
o =K tepm
fa=t—oq
& = (FuAl )/ (P AY)
Pa=tiatbp

END FOR -

Mgeee 3.1.1: The Preconditioned Conjugate Residual (PCR) Method.

where, 7, =b=Ax, is the residual for (3.11) amociated with x, for z =Sx,
7, ® b=A%, = $"'r, is the corresponding residual for (3.12), s, is the initial gucss for the solu-
tion of (3.1.1), and ry = §—Axe is the associated residual.

The Precounditioned Conjugate Gradieat (PCG) method can be implemented in a similar

way, but we believe that, for our application, PCR is more sppropriate than PCG. First, note
that the inezact chord-Newton method requires that the residual of (22.1) satisty (2.32).
Thersefore, for this problem, CR is the optimal uapreconditioned Krylov subspace method in




thcmthtitniniminuthemdﬂ;clelidulmthe&rylavwbmeeﬂ.u)with
Q@ =1. On the other hand, CG minimizes the A-norm of the error

-zl = G-n A=) = (A7) = bl -0 (319
rather than the residual itself, over the mme space (31.4). However, this advantage is pur-
tially lost for the precoanditioned methods, since PCR minimizes |r, 'g‘l while PCG minimizes
Iri1,-1 over (3.1.4). Second, PCR can be generalized more easily than PCG for aonsymmetric
mﬁumeoJS)thnnMnynmmmxmeh
positive-real, while (3.15) does aot. Moreogver, the preconditioned Krylov subspace methods
discusesed in the next sutwection which extend PCR to nonsymmetric systems are capable of
minimizing the residual associated with (3.1.1) provided the preconditioning is applied “on the
righ". Therefore, we counsider PCR ouly throughout the remsinder of this subsection,
altbough similar results hold for PCG.

Siace z; is 8 member of the affine space (3.1.4), the residual 7, associsted with (3.12)
mtisfies
Fom (1 =APA))ig = R(A)im (18)
where 7;.; is 2 polynomial of degree i-1 and R; is a polynomial of degree i that satisfies
R(0)=1 If A has k distinct cigeavalues (which are all positive since A is symmetric positive-
definite), we can chooss & polynomial 2, of degree k such that R, (0) =1 and R, (A) =0 for each
cigeavalue A of A. Since PCR minimizes || over (3.1.4) and this choice of R, makes 7, |
2ev0, it follows that PCR, like PCG, converges to the exact solution of (3.1.1) in at most k
steps. This is a slightly sharper version of the well-known result that PCG soives (3.1.1) in a2
most M steps (assuming exact arithmetic is used in the computation), where M is the dimen-
sion of the system (31.1). Note, though, that A snd A may not have the same number of dis-

tinct sigeavalues. In particular, A may have only a few distinct cigsavalues, whils A may have
M. Cousequently, in preconditioning, ons must take cars not to destroy aa advantageous
eigeavalue distribution.

More generully, oae caa derive from (3.13) and (3.1.6) the bound {10]




V= [ mia mex RG,)I | ol 617
where II, is the set of polynomials of degree i or less that satisfy R(0)=1 and {X,} are the
cigeavalues of A, which are also the cigenvalues of Q~!A since these two matrices are similar.
Using the i Chebyshev polynomial as a particular choice for R, one can derive the following

bound [1, 10]

. Fls2 %]‘ Vol 618
where K(A) = hul4)/Ma(A) is the spectral condition-number of A. Again, since 4 and
@~'A are similar, K(A) = K (Q~'4). Also, since [, ] = I -1, inequalities (3.L7) and (3.19)
bold with J7,] and 7] replaced by br,ly-s and Iroly-s respoctively. Similarly, it is well
known (1, 10] that both (3.1.7) and (3.18) bold for PCG with |7, | and 7] repiaced by fr,], -
aad |rol, -1, respectively.

If A is well-conditioned or the cigeavalues of A are clustered, then CR reduces the
eror in the initial approzimation very rapidly. Therefore, this method can be expected to
pertorm very cffectively on the linear equations that arise in mildly stiff IVPs or in large IVPs
for which the cigenvalues of the associated Jacobian form a few clusters. In particular, CR is
well-suited for problems with a fow stiff componeats only. (See (30, 82) and the references
thercin for a more detailed discussion of this latter class of problems.) On the other hand, if
A i3 ill-conditioned with its cigenvalues spread throughout s very large interval, then these
bounds suggest that CR may require a great many mors iterations than PCR to generate an
acceptable spproxzimation to the solution of (3.1.1). Since such linear algebraic systems arise
during the numerical solution of many large systems of stiff [VPs (in particularly, those that
ariss from the spatial discretization of time-dependent PDEs), we belicve that it is necessury
to consider effective preconditionings for use with iterative linear-equation solvers in codes
for stiff ODEs. The importance of preconditioning is demonstrated in the next two sections.

Among the more popular preconditionings for symmetric positive~definite systems are
SSOR [42, 85], the Incomplete Cholesky (IC) factorization [63], and the Modified Incomplete
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LU (MILU) factorization [41], s gencralization of the Dupont-Kendall-Rackford (DKR) fac-
torization [18). Each of these preconditionings can be written in the form
Q=LL =A+E,

where L is s lower triaagular matrix haviag the same sparsity structure 2s A, and E is an error
matriz. Thesc precoaditionings do not require more storage than the original matrix A aad, if
implemeanted carefully [19], may require substantially less. Furthermare, to solve a system
Qu =v or to compute Qu for any of these preconditionings does not require more computa-
tional work than muitiplying a vector by A and, when embedded in PCR, msy require sub-
stantially less [19).

As explsined ia §2.1, if the Jacobian £, (¢ ,y) is symmetric, then it is reasonsbie to expect
that the chord-Newton iteration matrix W2 (2.2.1) will be symmetric positive-definite. If this is
oot the case, then the stepsize A, is almost surely too large for the IVP and should be reduced
until W2 is positive-definite to casure a reliable numerical integration. For W} symmetric
positive-definite, the SSOR preconditioning is well-defined and both the IC and MILU incom-
plete factorizations can usually be formed [56, 62, 63].

PCR based upon these preconditionings has proven to be very effective for solving the
linear oquations associated with seif-adjoint ciliptic PDEs {10]. In the next two sections, we
preseat some theoretical and empirical results for the spatially-discretized Heat Equation
which show that PCR is very effective for this model problem also.

3.3. Precsaditioned Orthemin.

Although both PCG and PCR have proven to be a very effective methods for solving
symmetric positive-definite systems of linear algebraic equations, only recently have they beea
extsaded to solve more general systems effectively. As expluined in the previous subsection,
the solution of symmetric indefinite systems is not of great importance for stiff-ODE solvers.
Therefore, we only consider the solution of nonsymmetric systems in this subsection.

As obvious way to extead either PCG or PCR to solve a nonsymmetric system Az = b is
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to apply either of these methods to the symmetric positive-definite normal equations
A'Ax = A'D or to the related system AA'y = b, x = A'y. In cither case, though, for the badly
conditioned systems that arise in stiff-CDE solvers, this approach is not attractive because it
frequently leads to s slow rate of convergence.

Receatly, several effective Krylov subspace metbods have beew. developed which extend
PCG and/or PCR to nonsymmetric systems. For czample, Concus and Gofub [12] and
Widluad [83] developed s technique known as the Generalized Conjugete Gradient (GCG)
method which uses the symmetric part of A, S = (A +A'), as a preconditioning. GCG is par-
ticularly effective if & “fast” solver exists for S. Although this may be the case for magy pars-
bolic problems, this method is not well-suited for use in a general-purpose stiff-ODE sotver,

since there is a0 guarantee that systems of the form Sx = § can be solved cheaply.

We chose to base our investigation of the use of iterative linear-equatioa solvers in codes
for stiff IVPs upon the Preconditioned Orthomin(k) (POR(k)) method [20, 24, 81], an exten-
son of PCR to nonsymmetric systems, partly because Elman’s codes [21, 25] were available to
us and partly becsuse, like PCR, POR(k) minimizes the residual associated with the precoadi-
tioned system over 1 subspace dewcribed in more detail below. One of several other alterna-
tive Krylov subspace methods is discussed by Gear and Saad [37] and Brown and Hindmarsh
Gl

In this subsection, we briefly outline POR(X) and the related Preconditioned Generalized
Conjugste Residual (PGCR) method from which it is derived; a more detailed discussion of
thess methods can be found in [20, 24].

Like PCR, the effectiveness of POR(X) can often be improved dramatically by an
sppropriate choice of preconditioning. However, since POR(k) is applicable to nonsymmetric
systems, there is more @Gexibility in the choice of preconditioning for POR(k) than there is for
PCR. More specifically, the preconditioned system associated with (3.1.1) may be of the form

A= (21)
where A = Q;'AQ:", £ = Qxx, b = Q'8, @) wnd Q3 are substantially less “cxpensive” to
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invert than A, and the preconditioning matrix 0 = 0,0, is “close” to A (in & sense to be made
more precise below). In this formulation, the preconditioning (3.12) used with PCG or PCR is
equivalent to 8 symmetric positive-definite splis precondisioning having Q3 = Qi. Two other
particular forms of preconditioning (32.1) are worth noting: preconditioning on the lefs only
with Q; = I and preconditioning on the righs only with @, = [,

The prototype of the PGCR family of methods from which POR(k) is derived is shown
in Figure 32.1. The expression for a; used there is mathematically equivaleat to the expres-
sion given in Figure 3.1.1, but Elmana [24] belicves that the former is less sensitive to roundotf

error for nonsymmetric problems.

Choose x4

Set rg = b ~Axq.

Compute 7y = Q1 're

Compute py = Q5'Fs.

FOR i=0 STEP 1 UNTIL convergence DO
o = (1.07'A9)/ (@1'Ap: Q1'400)
o =5 tap
Piay = 7y ~ & Q' Apy
Compute p;.+-

END FOR

Figare 3.3.1: The Prototype of the Preconditioned Generalized Conjugate Residual
(PGCR) Family of Methods.

The two-term recurrence

Pt = Fraa +bpy (322)
used in PCR generates an A’ A-orthogonal sequence of search directions {p;} provided A is sym-

metric positive-definite. However, to obtain such a sequence tcrA. nonsymmetric, it appears to be
necessary to explicitly orthogonslize p,,; sgainst all previous search directions p; in geaeral. The
recurrencs recommended by Elman {20, 24] for PGCR is

i & az

-
i,

e - —— ‘
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@1'AQ5'7 4121 A;)
= - . 23
(Q17'40,.21'Apy) 623)
PGCR coasists of the prototype method given in Figure 3.2.1 together with these last two equations

- {
Pior = Qi + %’J‘Plo b =
i

1o compute p; +1.

The recurrence (323) requires the storage of all past search directions p; as well as far
more computation than (322). This may be prohibitively expensive for large problems. In
PORC(k), the truncated recurrence

R A (24
*h
is used instead, where b/ is computed as in (323). That is, p;,; is orthogonalized against the
past k search directions oaly. Heace, POR(k) requires the storage of at most k past scarch
directions and the recurrence (32.4) is significantly cheaper to compute than (3.2.3).

The work per iteration for these preconditioned Krylov subspace methods is the same as
for the unpreconditioned versions except that Q;'AQ:'r,.; must be computed ia place of
Ary+;. In computing the former product, the intermediate result Q57,4 can be used to com-
pute py.i,and Q1 'Ap;,; can be computed without any additional matriz-vector multiplies pro-
vided that Q;'Ap, is saved instead of p;,. Morcover, for SSOR and several of the incomplete
factorizations [41, 63}, Q1 'AQ:'7;+1 can be computed very efficiently using Eisenstat's tech-
nique [19).

If Ax = } is preconditioning on the left only (@3 = I), then cach of the PGCR family of
methods requires the same amount of storage as its corresponding unpreconditioned version.
Otherwise, each preconditioned method requires one more vector of storage than its
corresponding uspreconditioned version. However, the residual 7, calculated in this imple-
meatation of the PGCR family of methods is the residual associated with the preconditioned
gystem (32.1). If the residual b -Az, = r, = Q,r, associated with (3.1.1) is required, then the
storage advantage of preconditioning on the left only is lost: in this case, each preconditioned

method requires cas more vector of storage than its corresponding unpreconditioned version.
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If A is positive-real, then both PGCR snd POR(), k20, are convergent descent
methods in the sense that [7]-0 as i-» gad Jr,.] < Jr,] for 7, #0 [20, 24]. More
specifically, PGCR, like PCR, minimizes [7,] over the transiated Krylov subspace (3.14).
Hence, in this case also, the residual 7, at the i* PGCR iteration satisfies

Inls= ag:ll(i)l rl, (329)
where II, is the set of poiynomials of degree i or less satistying R(0) = 1. Using (32.5), one
can prove [20, 24] that

A8 V2.
—an o irel. (32.6)

where § -’Q(A.M.'). the symmetric part ot.i, is positive-definite since A is positive-real by

Inls 1~

mytion.s This bound, though, is not nearly as strong as (3.18) even though PGCR and
PCR compute ideutical iterates x, if A is symmetric positive~definite. If A has a complete set

of eigenvectors, then
, AEY (VAR 327
where x(r) -7 | |r"| is the condition number of the matrix T that diagonalizes A,
M, - "n' m“lk(x,)l. (323)

and (A} sre the eigenvalues o A. Note, if A is normal, then X (T) = 1.

Por i>k, the i*® iterate x, computed by POR(k) minimizes |7, § over the affine space
gt ¥ SPrapay * P11>
rather than the full transiated Krylov subspecs (3.1.4). However, in this case also, (3.2.6) hoids
for any k.

In all of the bounds listed abave, 7, may be replaced by Q'7;, since these two vectors
are oqual. Thus, one advantage of preconditioning on the right only (Q; = I) is that, ia this
case, the PGCR family of methods minimizes the residual »; amociated with the unprecondi-
tioned problem Ax = b at cach iteration, since 7, = 7;. As explained in the previous subsec-

————
:o<cg.u)-g.sx dﬂmmx.mA -J’ +th¢M-‘(xﬂx) 0 for
=A') is skewoymmetrie.
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tion, this seems to be the most appropriate measure of the error to be minimized by an itera-
tive method embedded in an inexact Newton iteration.

Provided that the associated chord-Newton iteration matrix W3 is positive-real, these
bouads indicate that, like CR, the (unpreconditioned) GCR family of methods is very
sffective for mildly stiff IVPs and for stiff I[VPs for which the eigenvalues of the associsted
Jacobian form a few clusters. On the other band, if the cigenvalues of W) are spread
throughout a large domain, then, a3 is demonstrated in the next two sections, the effectivenems
of POR(k) may be improved dramatically by an appropriate choice of preconditioning. How-
ever, care must be taken in choosing a preconditioning since, for the more general precoadi-
tionings considered in this subsection, A may fail to be positive-real even though A is. One
sdvantage of using the symmetric positive-definite split preconditioning (Q; = Q%) is that A is
positive-real if and only if A is. Furthermore, if A is “aearly” symmetric, then so0 is Q1'AQ;™,
and, for symmetric probiems, the iterates x; computed by POR(k), t =1, are ideatical to the
iterstes computed by PCR and PGCR. Intuitively, if 0;'4Q ™ is “nearly” symmetric, then we
expect the convergencs rate of POR(K) to be close to that of PGCR. On the other hand, evea
if A and Q = Q,0; are both “nearly” symmetric, Q:'4Q5™! need not be, and the convergence
rate of POR(k) may be significantly slower thaa that of PGCR.

Some popular preconditionings for acasymmetric systems are SSOR [42, 85}, the Incom-
plete LU (ILU) factorization [63], and the Modified Incomplete LU (MILU) factorization [41].
Each of these preconditionings can be written in the form
. Q@ =LU =A+E,

where L and U, respectively, are lower and upper trisagular matrices having the same sparsity
pattern as A. With thess factorizations, it is possible to precondition on the left or right or to
use 8 split preconditioning with @; =L and Q3 = U.

POR(k) with thess preconditionings has proven to be very effective for solving the sys-
tems of linesr algebraic equations amociated with discretized non-self-adjoint elliptic PDEs.
Obviously, the smaller k is the more efficient these methods are in terms of storags required.

e o e g

e ——— -




Elman [24] also found that these methods are most efficient in terms of computational work
for &k < S, with ¥ =1 often requiring the least amount of work.

As mentioned in §2.1, W2 is positive-real with respect to a given inner-product for any
A, > 0 for a large class of stiff IV, including all problems that are dissipative with respect to
that inner-product. But, for any given inner-product, there are stiff [VPs for which W is not
positive-real with respect to that inner-product for a reasousble choice of stepsize, 4,. In the
latter case, any member of the PGCR family of methods based upon that inner-product may
either compute an acceptable numerical solution or may “bresk-down’® during the computa-
tica.

On the other hand, if all the eigenvalues of the Jacobian /, (s y) lie cither in the left-
half complex plane or ou the imsginary axis, then, without any restriction on the stepsize &,,
all the cigenvalues of W} lie strictly in the right-half complex plane. Moreover, as discussed in
§2.1, even if some of the ecigeavalues of f,(r,y) lie in the right-half complex plane, it is rea-
souable to expect the stepsize &, to be constrained by the accuracy requirements to the extent
that all the eigeavalues of W2 will lie strictly in the right-half complex plage. In cither case, it
follows from (2.19) that there exists a real inner-product with respect to which W? is positive-
real. We hope to fiad a computationally effective way to utilize tfiis result to dynamically
choose an appropriate inner-product whenever W! is not positive-real with respect to the usual
EBuclidean inner-product.

33. Jaceblan-Free SHft-ODE Solvers.

As seversl suthors have noted, it is possible to avoid explicitly computing and storing the
Newton iteration matrix W2 when solving nonlinear equations by an inexact Newton method
coupled with a Krylov subspacs method. To implement such a Newton-Krylov method, it is
oaly necessary to be able to compute Jv for any given vector v, where J is an approximation to

the Jacobias /, (s, ). In masy stitt-ODE solvers, divided differences are used to form J.

But, sincs J is aot needed explicitly, the directional difference




(f G2 +80) =~/ (6,91 /3
caa be used to calculate sn approximation to £, (fad) v directly, where 8 is a scalar constaat.

Garg and Tapia [32] and O'Leary [66] recently investigated a similar idea for the applica-

tion of CG to minimization problems. O'Leary shows that, ia addition to saving storage, the
Newton-CG method empioying directional differences requires less computational work thaa ?

the traditional discrete-Newton method for large problems.

Furthermore, the test resuits of Brown and Hindmarsh [3] based on the code developed

by Gear and Saad [37] demonstrate that the use of directional derivatives to spprozimate
matriz-vector products in a Newton-Krylov iteration is very effective for the spstially-
discretized nonlinear parabolic probiems that they considered.

However, all of the preconditionings referenced above require an explicit representation
of the matrix J. Chan and Jackson [8] though, receatly developed a class of noalinear precon-
ditionings, including s variant of SSOR, that does aot require J explicitly and so can be used
with - Newtos-Krylov methods employing directional differences. Moreover, for their test

peoblems, the nonlinear SSOR preconditioning was as effective as the standard explicit SSOR
preconditioning. ?

Since computing and storing Jacobians is 3 major sourcs of expense in solving lurge stiff '
IVPs, tbe possibility of svoiding this computation seems very attractive, particularly for thase |
problems for which we can expect s Krylov subspace method to converge very rapidly, such as i
those [VPs for which the eigenvalues of the associated Jacobian form a few clusters.

. 4 Theeretical Resulits for the Heat Equatica.

The theoretical results in the last section can be adapted easily to show that the use of

Krylov subspece methods in stiff-ODE solvers is very effective for a large class of IVPs. Asa

particular exampie, in this section, we compare the computational-work and storage required

to solve the spatially-discretized Heat Equation by five stiff-ODE solvers each based upon the

‘ BDFs but using oae of the following methods to soive the systems of linear algebraic equa- ]
g tions that arise at each step in the aumerical integration: (1) full Gaussisa Elimination (GE),
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(2) bend GE, (3) sparse GE, (4) the Conjugste Residual (CR) method, or (5) the Precondi-
tioned Conjugate Residual (PCR) method with either the SSOR [42, 85] or MILU [41] precon-
ditioning. Although we do not advocate using these methods to solve the Heat Equation in
peactice, the spatially-discretized Heat Equation is a good test problem from a theoretical
point-of-view becsuse it is representative of a class of large stiff IVPs with sparse Jacobians
and it can be snalyzed thoroughly.
Coasider the Heat Equation in one dimeasion (1-D) with homogeneous Dirichlet boun-
dary coaditions:
B x) = uy(1,5) for (s,2)€(resy 1%(0,0), (4.)
8@ 0) =u(t,1) =0 fort€(tesr ]

u(tex) = uolx) for x€(0,1].
Applying the method of lines with the usual centered-difference approximation with stepsize

A-;%:om.pnuuderimiveot(u)mmunmsyuemotu = m ODEs y’ = Ay

for 1 € (12, ) with initial conditions y,(te) = u(seJA) for i=1,__m, where y,(z) is an approxi-
mation to u(¢s /A) and A; = A% dlag(1,~2,1). It is well-known that the cigenvalues of A; are

{2 Ycos(id®) - 1] : { =1, }. 42)
All the cigenvalues are negative and are distributed throughout an interval from approxi-
mately ~u? to approximately —44~2. As the spatial discretization becomes finer, the resulting
system of ODEs becomes both larger and stiffer, but the cigenvalues of the associated matrix
Aj do aot cluster.

Also coansider a similar spatial discretization of the Heat Equation in two dimensions
(2-D) and thres dimeusions (3-D), esch with homogeneous Dirichiet boundary conditions. For
the 2-D problem, the matrix A; amociated with the resulting linear system of M = m2 ODEs
YmAyy B A;=Aldiag(/;TJ), where I; is the mxm idestity matrix sad
T = disg(1,~4,1). Hence, the cigenvalue of A, are

(N +l, timlem, =1, ),
whare )\, aad A, ars cigenvalues (42) of the 1-D prodiem. Similarly, for the 3-D problem, the
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matrix Ay amocisted with the resulting lincar system of M =m® ODEs y =4y is
Ay = A3diag (138217, where I; is the m3xm? identity matrix, B, = diag(l,,T2J,), and
T3 = diag(1,-6,1). Hence, the cigenvalues of A, are

(MM +0 timlm, =l k= m },
whers A, A, and \; are cigeavalues (42) of the 1-D problem.

We compare the computational-work per step required by each of the five stiff-ODE
solvers considered above to integrate the spatially-discretized 1-D, 2-D, and 3D Heat Prob-
lems. The numerical results presented in the next section show that, for any given problem in
this class, each solver requires esentially the same number of steps throughout the numerical
integration. Thus, for each solver, the computational-work per step is represenrative of the
total computational-work required. Moreover, implicit in our comparison is the asumption
that each stiff-ODE solver requires the same number of Newton iterations per step. The vali-
' dity of this asumption is supported by the numerical results also.

_The computational-work per step can be divided into thres componeats: (1) the work to
factor W3 for the GE variants or to compute a preconditioning for PCR (if W2 is refactored or
" the precounditioning is recomputed on that step), (2) the work to solve (22.1) using ecither the
LU factorization for the GE variants or the (P)YCR method, aad (3) ail the remaining work
per step, which is termed the computationsl-work overhead. We measure the computational-
work for each operation in terms of the sumber of arithmetic operations required to perform
it.

Similarly, the storage required by each soiver can be divided into two components: (1)
" the storage required to solve the system of linear algedbraic equations and (2) all the remaining
storags, which is termed the storage overhesd.

For each of the five stiff-ODE solvers considered, bath the computational-work and
storags overheads are proportional to M, the size of the system of ODEs solved. Moreover, in

both cases, the overhead is identical for each solver.
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In determining the computational-work and storage required for full GE, we assume
that 0o advantage is made of the sparsity of the matrices Ay, A3, and A;. Thus, in each case,
to factor the Newton iteration matrix I <A, B,A,, i =1,2,3, requires computational-work asymp-
totically proportional to M7, which is m’, m®, and m?, for the 1-D, 2-D, and 3-D problems,
respectively. In each case, both the computational-work required to solve the amociated sys-
tem of linear equations, given the LU factorization, and the storage needed for cither the

Newton iteration matrix or its LU factorization are asymptotically proportional to M2, which
is m3, m*, and m*, for the 1-D, 2-D, 2ad 3-D problems, respectively.

The haif-band widths for 4, A3, and A; are 1, m, and m?, respectively. Thus, in each
case, to factor the associated Newton iteration matrix using band GE takes computational-
work asymptotically proportional to m, m*, and m’, respectively. Also, in each case, both the
computational-work to solve the associated system of linear equations, givea the factorization,
as well as the storage required for either the matrix or its factorization are proportional to m,
m’, aad m3, respectively.

In determining the computational-work and storage required for sparse GE, we assume

that the asymptotically optimal factorization is used, although, frequently, this is not the case
in practice for the 2-D and 3-D prodblems (cf. [22, 23]. ‘nuu. the computational-work to fac- '1
tor the Newton iteration matrix 7 —A, B,A,, {=1,2,3, is asymptotically proportional to m, m3, or
m$, respectively. In each case, both the computational-work to solve the amociated system of 1

linear equations, given the factorization, as well as the storage required for either the Newton

iteration matrix or its factorization are proportional to m, m’logm, snd m*, respectively. i

As stated in 123, to compute s sufficiently accurate solution for the inexact chord-
Newtoa method, it is generaily necessary to reduce the initial residual associsted with (233)
by » constant factor n only, where n is typically about .1. From (4.2), the spectral condition-

aumber of the Newton iterstion matrix I-A,B,4,, ! =123, increases with A, from 1 at
A, »0t04n"2A"2 as &, - ®. Heace, from (3.1.8), the sumber of CR iterations required to }

reducs the initial residual by a factor of n is st most [bg(Z/n)-l"A" . In addition, because
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of the sparsity of A,, A, and A,, the number of arithmetic operations required for each CR
iteration is proportional to M, the dimension of the matrix. Thus, for each of these matrices,
the computational-work required to compute a sufficieatly accurate solution to (233) is ¢
most asymptotically proporticnal to m3, w3, and m*, respectively, and the storage required is
asymptotically propartional to m, m2, and m3, respectively.

For cither the SSOR [42, 85] or MILU [41] preconditioning (with the appropriate choice
of scalsr parameters), the spectral condition-sumber of the preconditioned Newton iteration
matrix incresses with A, from 1 at A, =0 to cA™! (for some constant c¢) ss A, - = [10}.
Heace, the aumber of PCR iterations required to reducs the initial residual by a factor of 4 is
at most asymptotically proportional to A~%, In addition, because of the sparsity of cach New-
toa iterstion matrix and its asmociated preconditioning, the number of arithmetic operations
required for each PCR iteration is proportional to M, the dimension of the system. Thus, in
each case, the computational-work required by PCR to compute a sufficiently accurate solu-
tion to (233) is at most proportional to m'™®, m?%, aad m’®, respectively,’ and the storage
mukdmpmdwn,u’,ﬁdn’.mly. Moreover, in cach case, the
work required to compute the MILU factorization is proportionsl to the aumber of nonzercs
in the matrix, m, m3, and m’, respectively, while no work at all is required to “compute” the
traditional form of the SSOR “factorization’.

The computational-work estimates given sbove are biased in favour of the GE variants.
During the initisl transient for each problem, the stepsize A, is “small”, and, consequently, the
condition number of the Newton iteration matrix J —A,B,A;, | = 12,3, or the associated
~ preconditioned matrix is °closs® to 1. As s result, the computational work per step for CR
and FCR is much smaller during the initial transicnt than the estimates givea above indicate:
thepe cstimates are accurate for A, “large” only. Ou the other hand, the computational-work
required by the GE variants to factor and solve the Newton systems is independeat of the

$ Foe the 1-D probiem, FCR presocaditionsd by MILU (with the amociated MILU parameter a =0) coaverges in one
{osrstion with computational-work propordosal to m, since, iy this cass, the MILU factorization is actually the ex-
ast LU fassorimtion of [ ~A, B,A;. This resuit bolds for several other incomplets factoriztions as well,

o
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stepsize o, . In addition, even for &, “large’, the computational-work estimates for PCR do not
sppesr 20 be optimal, whereas the estimates for the three GE variants discussed above are
optimal. For example, Chaa, Jackson, 2aad Zhu [9] show that there is strong evidence that, if
the “AD-DKR’ preconditioning is used for the 2-D problem, then the condition number of the
proconditioned Newton iteration matrix is asymptotically proportional to A~*® and that the
sumber of PCR iterations required to reduce the initial residual by a constant factor of n is
asympotically proportional to A™'2, Again, because of the spearsity of 4, and the associated
AD-DKR preconditioning, the sumber of arithmetic operations required for each PCR itera-
tioa is proportional to M, the dimeasion of the system. Thus, there is strong evidence that,
for the 2-D problem, the computational-work required by PCR to compute a sufficieatly accu-

i
rate solution to (2.33) is at most asymptotically proportional to m 3, rather than mit. More.

over, both the storage required for PCR and the computationsl-work needed to compute the
AD-DKR incomplete factorization remain asymptotically proportional to m2.

“The computational-work and storage required for each of the five stiff-ODE solvers is
smmmarized in Table 4.1. These estimates show that, for this class of problems, the user
should take advantage of spersity: full GE is not competitive with cither band or sparse GE.
For the 1-D problem, band (sparse) GE is the most effective method. On the other haad, for
the 2-D problem, both CR and PCR require asymptotically less storage than any of the GE
variants and are asymptotically faster thaa either full or band GE. However, it is not clear
which of PCR or sparse GE is asymptotically faster. The aaswer to this question depends on
how frequently the linear systems must be refactored as the stepsize increases during the
courss of the oumerical integration when sparse GE is used as well as the proportion of steps
takea in the transient region where A, is smail” and PCR requires less computational-work
per step than the estimates in Table 4.1 indicate. For the 3-D problem, though, PCR is asymp-
totically faster than any of the other methods aad requires significantly less storage than any

of the GE variants.




full GE | band GE | sparse GE | CR | PCR

factor [ m [ - m

solve ' m m nt | mi®

D | storage | =’ m ) m | m

overhead m m n m m

tactor n® = mn’ . mn*

} solve =t n’ n’logm n | mt
) D storage m® n’ miogm | m? | m? |
averhead mn m m* mi | mdi

factor [ m mn’ . "
solve m® m’ m* m | m> |

3D storage =t n’ m m | m

gverhead m’ m’ 2° n | m?

Table 41: The principal esymptotic term for the storzge for and the
computational-work per step required to facter acd solve the Lnear algebraic sys-
tems that arise during the sumerical integration of the spatially-discretized Heat
Problem, as well o3 the overhead of ail the remaining storzge and computaticnal-
work per step required by the stitf-ODE salver.

§. Namaerical Resuits.

We have replaced the direct linear-equation soivers in LSODE [48] by PCGPACK, a col-
lection of preconditioned Krylov subspace methods implemented by Elman (21, 25]. We refer
to the resulting experimental code as LSODCG. In this section, we report some preliminary
aumerical experiments with LSODCG to test the effectiveness of iterative linear-equation
solvers in codes for large systems of stiff [VPs for ODEs. In particular, we compare the per-
formance of LSODCG and LSODES® [49) on two pairs of spatially-discretized two- and

_three-dimensional linear parabolic problems as well as the performance of LSODCG and
LSODE on the thirry Stiff Detest Prablems [27, 29). Although most of the Stiff Detest Prob-
lems are not {arge, they do test the mbun.:m of the inexact chord-Newton method and the

sssocisted iterative linear-equation soivers used in LSODCG. These preliminary test results
look quite promisiag.

4 LSODES is a veriant of LSODE incorporadag the Yale Sparse Matriz Package (22, 23] to wive the systems of
Hosar algedrais equations by a sparse direct method.




S.1. LSODE, LSODES, aad LSODCG.

We developed two variants of LSODCG: LSODCG.V1 and LSODCG.V2. In the former,
we did not make say modifications to the formulas, strategics, or heuristics used in LSODE
other than those modifications that were necessary to interface LSODE and PCGPACK, such
s changing the data structure for storing matrices in LSODCG to the sparse “IA-JA-A’
representation used in PCGPACK and many other sparse linear-equation solvers. In
LSODCG.V2, we made one additional modification to LSODE in hope of reducing the
sumber of inexact chord-Newton iterations and associsted function evaluations throughout
the course of the numerical integration: each time A, P, is changed in LSODCG.V2, this scalar
factor is updated in the Newton iteration matrix /-, B,/ without re-evaluating J, and, if a
precoaditioner is being used in PCGPACK, it is recomputed. Since the Jacobian approxima-
tion J is not re-evaluated, these updates are relatively cheap compared to solving the associ-
ated linear algebraic equations. In LSODE, LSODES, aad LSODCG.V1, on the other hand,
the Newton iteration matrix is updated only when the magnitude of the relative change in
h, B, is greater than CCMAX, s constant set to 3 in each of these three codes. Wheanever the
- Newton iteration matrix is updated, either it is refactored in LSODES or, if a preconditioner
is being wsed in PCGPACK, the preconditioner is recomputed in LSODCG.V1. In LSODE
snd LSODCG.V], the Jacobian approximation J is re-evaluated whenever the Newton itera-
tion matrix is updated; in LSODES, the Jacobisn is re-evaluated only when it is estimated to
be a poor spproximatioa to the curreat Jacobian.

Ia all four codes, the scceptance criterion for the Newton iteration is of the form (2.1.1)

with ¢ =CONIT = » where NQ is the order of the BDF in use. In both variants of

35
NQ+2
LSODCG, we use a stopping criterion for the iterative linear-equation solver in the inexact

chord-Newton method of the form (233). Our aumerical experiments show that any r in the

3 Updacing the Newtoe iteration matris would be even cheaper if LSODCG.V2 mored Ilb—’.l tather thes
§ =A,ByJ . This chaogs is eany to implement. *
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range {[1,5] is quite satisfactory: smaller values of r in this range lead to more PCGPACK
iterations per inexact chord-Newton iteration, but frequently lead to fewer inexact chord-
Newton iterations resulting in fewer function evaluations. Some aumerical results along this
line are reported in the third subsection. Also, as meationed in §23, we take —F (y}), rather
than 0, as an initial guess for y2 *'~y2 in (233) for both variants of LSODCG.

$2. Spstialiy-Discretized Linsar Parsbolic Problems.

Cousider the Heat Equation in two dimensions (2-D)

"=y e, " (529)
and three dimensions (3-D)

L R R (522)
and the Convection-Diffusion Equation in 2-D

oy =ay tuy ta, +a 523
sad 3-D
L R RS SRR 24
each with homogeneous Dirichlet boundary-conditions either on the unit square [0,1]x[0,1] for
the 2-D probiems or on the uait cude [0,1]x[0,1]%[0,1] for the 3-D problems and initial condi-
tions for ¢ € [0,1024]

8(0x ) = 162(1~x)y(1~y)
for the 2-D problems and

8(0xy2) = 6Ax(1-2)y(1~y)e (1~2)
for the 3-D probiems. As described in §4, applying the method of lines to the Heat Equation
' with m+1 evenly spaced grid points in cach dimeasion ordered in the usual left-to-right

bottom-to-top manaer and using the usual three-pomnt second-order centered-difference

Mmmmmm«muﬁnﬁmmusmA-;—‘:l-yidd;awem

of stiff ODEs of the form

Y @) =Ay(e), (523)
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where A is s constant symmetric negative-definite matrix with A = A; of dimension M = m?
for the 2-D problem and A = A, of dimension M = m? for the 3-D problem. Applying the
method of lines to the Convection-Diffusion Equation in a similar way, but with the addition
of the two-point second-order centered-difference spproximation to the first-order spatial
derivatives, also yields a system of stiff ODEs of the form (S52.5), where again A is a constant
matrix of dimension M = m? for the 2-D problem and of dimension M = m? for the 3-D prob-
lem. In this case, though, A is a nonsymmetric aegative-real matrix for both the 2-D and 3-D
problems.

The cigenvalues and cigenvectors of the matrix A associated with the spatially-
discretized Hest Equation (5235) are well-known. Thercfore, the exact solution of the associ-
ated IVP can be calculated easily for any t. For the Convectioa-Diffusion Problem, we used
EISPACK [31, 78] in double precision can sn [BM 3033 to calculate the cigenvalues and eigen-
vectors of the matrix A associated with the spatially-discretized 1-D problem of the form
(52.5). Since the sofution of the spatiaily-discretized 2-D asd 3-D prodlems caa be writted as
the tensor product of solutions of the associated 1-D problems, the exact solution of the
spatially-discretized 2-D and 3-D Convection-Diffusion Problems can be compuced easily for
any t also.

We used LSODES, LSODCG.V], and LSODCG.V2 on an IBM 3033 computer in double
precision to compute aumerical solutions of the 2-D problems for m = §, 10, 15, 20, 25, 30 and
the 3-D probiems for m = 3, 5, 7, 9. In esch case, we used the BDFs with exact Jacobians
(MF=21) and an absolute local error tolersace of ATOL = 107 (ITOL=1 and RTOL=0). We
integrated from the initial point t=0 to the output points T =2‘ /100, for i=0,1,2,.,10, using the
continuation option (ISTATE=2) to integrate from one intermediate output point to the aext.
Becsuse we did not require the output points to be hit exactly (ITASK =1), the solution vector
is computed by interpolation and, oa occssion, more than one solution vector is computed per

integration step, as can be seen in some of the numerical results presented below. No optional

input (IOPT =0) was used.
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We used the PCGPACK implementation of the Preconditioned Conjugate Residual
(PCR) method [25] and the Preconditioned Orthomin(k) (POR(k)) method {21, 25] for k=135
to solve the linesr algebraic equations in LSODCG. For each of these methods, we used one
of the three PCGPACK preconditionings:

1. NOPRE - no preconditioning,

2. TCSSOR - the two-cyclic implementation [19] of the SSOR preconditioning, or

3. TCDKR - the two-cyclic implementation [19] of the DKR [18] incomplete factorization,
more gencrally referred to as the Modifted Incomplete LU (MILU) factorization [41].

For the TCSSOR preconditioning, we used @ =2/[1+sin(x4,/2)], where A-%ﬂ is the spatial

stepsize. This value of @ is “near optimal® [85] for the spatiaily-discretized 2-D and 3-D Heat
Equations. Although this value of @ may not be “near optimal” for the spatially-discretized
Coavection-Diffusion Equation, it is sppropriate in this case as well, since, in practice, an
optimal value of @ for the problem to be solved is typically not known. For the TCDKR
precounditioning, we used a=0 for all problems, as recommended by Chandra (10]. In
Orthamin(k), the preconditioning was spplied on the right as described in $32. In both vari-
ants of LSODCG, we used a stopping criterion of the form (233) with r=5 for each iterative
linear-equstion solver. However, we also set the maximum PCGPACK iterations permitted to

solve any one linear system to max(100,10m).

$2.1. Detalled Numerical Remits for Oua Problem.

Detailed results for the aumerical solution of the spatially-discretized 2-D Convection-
Diffusion Probiem with m=20 using LSODES, LSODCG.V1, and LSODCG.V2, respectively,
sre given in Tables S2.11, 52.12, and 52.13. The linear-equation soiver used in LSODCG is
POR(1) preconditioned by TCDKR. These aumerical results are representative of the pet\tct-
mance of these three codes on the problems considered in this subsection.

Ia each table,

- e~ —p———
PRSP EN - M

e e~ y——




- T is the cutput point,

- ERROR is the root-mean-equare norm®

of the difference between the numerical and exact
solutiocas to the problem at T,

- HU and NQU, respectively, are the stepsize sad order used by the BDF in the last step
takea to reach T, and {

- NST, NFE, and NIJE, respectively, are the total number of steps, function evaluations, and

Jacobian evaluations used from the initial point t=0 to the current output point T.

Note also that NFE -1 is the aamber of Newton iterations used from the initial poiat t=0 to

the current output point T, since all but the first function evalustion is associated with a

Newton iteration. For LSODES, NLU, MLTFAC, aad MLTSLV, respectively, are the total
sumber of : p
- LU factorizations used, 4
- multiplies used in the LU factorizations, and

- nl;ldpliumdintmndmdbukwndmimﬁm

by the Yale Sparse Matrix Package to solve the linesr equations that arise in the numerical
integration from-the initial point t=0 to the output point T. For LSODCG, NPRE aad |
ITSTOT, respectively, ars the total aumber of ‘
- preconditionings computed, and

- iterations used by the linear-equation solvers

to integrate from the initial point t=0 to the output point T. ITSMAX is the maximum
sumber of iterations used to solve aay one system of linear equations in integrating from the
initial point t=0 to the output point T. For esch ODE solver, MLTTOT is the total number
of multiplies used to solve the linear equations from the initial point t=0 to the ourput point
T; for LSODES, MLTTOT = MLTFAC + MLTSLV.

¢ The rost-menn-equare 50rm o8 2o s-vestor xis x| = \/%:2:1", l
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Also shown in these tabics is the storage required by cach of the three ODE solvers. In
each cass, STRMAT is the aumber of nonzercs ia the matrix A amocisted with the ODE
(525). For LSODES, STRFAC is the number of nonzerces ia the LU factorization computed
by YSMP. For LSODCG, STRPRE and STRMTH, respectively, are the aumber of nonzercs
required to ®tore the preconditioning (M for TCSSOR or TCDKR and 1 for NOPRE) and the
additional storage used in the iterative method ([4+2X]M + 2 for POR(K) and 4M for PCR).
Foe both LSODES and LSODCG, STRTOT is the total aumber of storage locations required
for the linear equation soivers.” For LSODES, STRTOT = 2STRMAT + 2STRFAC + 11'M
+ 2, whils, for LSODCG, STRTOT = 2STRMAT + STRMTH + STRPRE + M + 1.

The vaiues of ERROR, HU, NQU, and NST are very similar for all three codes. From
this we deduce that, for this clam of problems st least, the error-control, stepsize-selection,
and order-selection strategies in LSODE are not significantly affected by the use of an itera-
tive lincar-equation soiver. Although NFE also is similar for all three codes, it is 7-10%
smaller for LSODCG.V2 than for cither of the other two codes indicating that the use of the

current value of A, B, in the Newton iteration matrix 7 ~A,B.J reduces slightly the total i

aumber of Newton iterations required throughout the integration. |

The difference in NJE for LSODES and LSODCG.V1 demonstrates the superiority, for
this class of problems at least, of the strategy used in LSODES over the one used in ‘
LSODCG.V1 (taken without modification from LSODE) for determining whea a Jacobian re-
evaluation is required. LSODCG.V2 uses two, rather than one, Jacobiaa evaluations because
we did not alter LSODE’s strategy that forces 3 Jacobian re-evaluation every MSBP (=20)

steps. If this requirement were removed {rom LSODCG.V2, then it too would use only one
Jacobisn evaluation throughout the course of the integration, as it should for this class of

problems.

7 We count each doubdle precisios aad ioteger varisble = cae storage location altbough, oa the IBM XL, .- a2 dos-
ble presision varisble requires fwo words of stossge wheress esch ioteger variable requires caly cse. However,
this make lttle differencs in the comparisos of the storags required by itsrative and direct lineas-equation solvers
sines, for & given problam, both techaiques use approzimately the same proportioa of iategsr to doubls precisios
variables.
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T "ERROR L1 QY 3V NFE ML Ly HLTFAC sLTILY NLTTO
0.010 0.3400-0) 0,.2780=-04¢ i3 8 L 3 611382 203240 g14602
0.020 0.57T00-03 0.382p-02 3 1 15 1 L} 815176 288508 1099688
0.080 0.3%520.0) 0.7380-02 3 18 18 1 5 1018970 385478 1364888
0.080 0.813D.03 0.1370=01 3 19 tL 1 [} 1222764 467806 1690170
0.160 0.1010-03 0.186D=01 L] 28 29 ) [] 1222760 $89016 1791780
0.320 0.1660-03 0.3010-01 3 30 3¢ 1 k4 1826858 T1127T0 2137828
0.680 0.3830.0% 0.131D«00 1 bt [}] 1 9 1838146 §12880 2647026
1.280 0.1270-0% 0.123D«01 1 36 ®Q t te 2037980 833202 2871182
2.560 0.38850-07 0.1230+01 1 37 L%} 1 10 2037980 853524 2891468
$.120 0.2800-08 0,1230+02 1 38 an 1 " 2281738 873888 3115580
10.280 Q.183D-08 0.123D-02 1 3 (1] 1 11 2241734 873846 2115580

Storage required By YSNP: STANAT a 2380, STRFAC s 20322, STATOT = $9306.

2.1.1: LSODES solution of the spatially~disecretized 2~D Convection-Diffusion

vobles oo an asm grid vith a s 30.

T EXACR L1 N Iy ] [ MAX ML
0.01Q 0.8300-03 0.2790-02 2 L) 1% 3 3 16 3 257882
0.020 0.568D-03 0.482D-02 3 11 1] 4 3 218 3 181855
0.080 0.8630-03 0.7820-02 3 14 19 S ) 33 b ] 519649
0.080 0.8180-03 0.137D=01 3 19 28 [] L] 52 S 803821
0.160 0.1060-03 0.1880-01 L} 28 30 6 6 T 5 1082034
0.320 0.1150-03 0.27%D-01 -3 30 37 7 7 s 10 17230398
0.640 0.8620-09 0. 1200400 1 3s L] 9 9 157 fa 2338712
1.280 0.1390-0% 0.108D+01? 1 36 83 10 10 175 18 2596869
2.560 0.83180-07 0.108D+01 1 37 (1} 10 10 188 18 2783438
5.120 0.1130-07 0.108D+02 1 38 as 1" " 211 23 3115699

10.280 0,.%5090-08 0.108D«02 1 38 L] 11 11 211 23 J115699

Storage required dy PCGPACK: STRNAT s 24380, STAPRE = 900, STRTOT s 15063.

Tadle 3.2.1.2: LSODCG.V1
1f{fuston

solution of the

robles oa an azm grid vith a s 30.

spstlally~-discretized

2+0 Convestion-

T “LRROR WO WaU  NS% WFE WIE  WPRE IT8:01  IISMAX _ ALI:ot ]
0.010 0.839P-03 0.2770-02 2 [) 10 1 [] k] 3 245062
0.020 0.5750-03 0.888D0-02 3 11 13 1 L) 20 3 320689
0.080 0.8670-03 0.738D-02 3 " 3 1 6 23 3 886982
0.080 0.818D-03 0.128D-01 3 19 21 1 1 us s 686409
0.160 0.872D-08 0.187D-0Q1 8 FL 27 2 [] (14 ] 1030549
0.320 0.1770-03 0.308D-0% 3 30 33 2 10 97 6 1870763
0.620 0.3020-0% 0.1380.00 1 3s 2 2 12 138 n 2026532
1.280 0.1100-0%8 0.1380«01 1 36 39 2 13 155 20 2316153
2.560 0.8830-07 0.138D.31 1 37 ') 2 13 169 20 2516980
$.120 0.3820.07  0.138De02 1 38 N 2 1 198 2% 2077649

10.280 0. 188007  0.138D«02 1 38 LA 2 18 198 28 2877649

Sterage required by PCCPACK: STRMAT s 8380, STRPRL » 900, STRATOT =« 15963,

1

1ffusion

,2.1.3: L30DCC.¥Y2 solution

of

the

spatiallye-dineretized

oblem on an eze grid with « s 30.

2-0 Conveetion-
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The sequence of values of NLU for LSODES and both NJE and NPRE for LSODCG.V1
sre identical indicating that both codes had the same number of “significant” changes in &, 8,
mechpﬁrdompdms.whmbyl'ipmmt'chupwemt!mthenqni-
tude of the relative change in A, B, is greater than CCMAX (=3). The values of NPRE for
LSODCG.V2 are slightly larger than those for LSODCG.V1. Thus, sssuming that the stepsize
sequences in all three codes were similar, there were some changes of 4,8, in LSODES and
LSODCG.V1 that were not "significant”. Consequently, on some steps in LSODES and
LSODCG.V], the factor A, B, in the Newton iteration matrix / —A,$,J was not equal to the
value of A,p, used in the BDF on that step. On the other band, LSODCG.V2 updates the
factor A, B, in the Newton iteration matrix whenever A, 8, changes. This may explain why
LSODCG.V2 used fewer Newton iterations (NFE-1) than cither of the other two codes. Asa
result, MLTTOT is smaller for LSODCG.V2 than LSODCG.V1 st each output point even
though LSODCG.V2 re-computed the TCDKR preconditioner more frequently than
LSODCG.V1 did: the reduction in the number of Newton iterations and amociated linear-
system solves more than offset the additional preconditioner computations.

The final value of MLTTOT is approximately the same for all three codes. However,
during the initial stages of the integration, MLTTOT for the two variants of LSODCG is
significantly less than for LSODES. For these steps, A, is small and the spectrum of I =4, B,/
is clustered around 1. Consequesntly, only a few POR iterations (ITSMAX) are required to
solve each linear system. However, as the integration proceeds sad A, grows, the spectrum of
1 -k,p,J expands and more iterations are required to solve each linear system. However, for
Ay, > 1, ITSMAX does not grow significantly with A,, since, as a rule of thumb, it is the rela-
tive sise of the eigeavaiues to one another, rather than the absolute size of the cigenvalues,
that determines the rate of convergence of most Krylov subspace methods, and the relative
size of the cigeanvalues does not chenge significantly witk &, for A, > 1. For LSODES,
MLTFAC is spproximately two-thirds of MLTTOT, and this factor grows as the grids become

finer.

LTI T
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Altbough, for this problem, each code requires approximately the same amount of
computational-work, STRTOT for LSODES is sbout four times the value of STRTOT for
either variant of LSODCG. Moreover, this factor grows exponcatially as the grids become
finer. In addition, note that, for LSODES, STRFAC is sbout five times as large as STRMAT.
On the other haand, for LSODCG with POR(1) preconditioned by TCDKR (or TCSSOR),
STRPRE is sbout one eighteenth of STRTOT, since the TCDER (or TCSSOR) precondi-

tioner requires only one M-vector of storage.

522. A Semmary of the Numerical Resuits for All the Test Prebloms,

We present below a summary of the nsumerical results for LSODES aad LSODCG.V2
using the PCGPACK linear-equation solvers PCR and POR(k), k=135, preconditioned by
NOPRE, TCSSOR, and TCDKR for the four spatially-discretized parabolic problems on m Xm
grids, m=5,10,15,-.,%0, for the 2-D problems, and m Xm Xm grids, m=3,5,7,9, for the 3-D prob-
lems. Since the numerical results for LSODCG.V2 are similar to, but generaily better than,
those for LSODCG.V1, we have not included a summary of the numerical results for the

latter code.

The total number of PCGPACK iterations, ITSTOT, aad the maximum number of itera-
tions for any one solve, [TSMAX, used by LSODCG.V2 throughout the integration are listed
in Tables $221 and 5222 and Tabdles 5223 and 5224, respectively. Graphs of m ageinst
ITSMAX on a log-log scale for POR(1) preconditioned by NOPRE, TCSSCR, and TCDKR

are given in Plots 522.1 and 5222 for ths two 2-D problems.

The total aumber of multiplies, MLTTOT, used by LSODES azd LSODCG.V2 to solve
the linesar sigebraic systems throughout the integration are listed in Tables 5225 and 5226,
Graphs of m against MLTTOT oz a log-log scale for LSODES and LSODCG.V2 with POR(1)
preconditioned by NOPRE and TCDKR are givea in Plots 5223 to 52245 for all four prob-
lems.

The total storage, STRTOT, required by the linear-equation solvers in LSODES and

[ N Y S SR PR
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LSODCG.V2 for the 2-D snd 3-D problems is given in Table 522.7. (Each linear equation
solver requires the same amount of storage for both of the 2-D probiems as well as the same
amount of storage foe both of the 3-D problems.) Graphs of m agrinst STRTOT on a log-log
wcale for LSODES and LSODCG.V2 with POR(1) preconditioned by NOPRE and TCDKR (or
TCSSOR) are given in Plots $22.7 and 5228 for the 2-D and 3-D problems.

An eatry of °™ in place of a aumber in these tabies indicates that, during the course of
the integration, the associsted iterative linear-equation solver failed to converge in the max-
imom number of iterations allowed, max(100,10m). Ounly PCR with no precoaditioning failed
to converge, aad it failed on the spetially-discretized 2-D Convection-Diffusion Problem with
m=10 and 1Soaly. It is in (utsurpmmg that PCR did not fai]l on more of the Coavection-
Diffusion Problems, since the linear systems associated with these problems are nonsymmetric
and PCR is not (in theory at least) applicable to such systems.

Coasider the results for LSODCG.V2 first. For these test probiems, POR(1) is the most
effective of the four dasic PCGPACK methods considered. For 2 givea probiem and precon-
ditioning, MLTTOT for POR(k), k=135, generally increases with k evea though ITSTOT
often decreases with k: the reduction in the number of iterations is more than offset by the
sdditional work required per iteration as k increases. As menticned above, PCR failed on
two problems and is not guaranteed to converge for any nonsymmetric linear system. Further-
more, for the symmetric Heat Problems, PCR is not significantly more efficient than POR(1).
On the contrary, when preconditioned, PCR frequeatly requires more multiplies than POR(1)

since, even though PCR may require fewer iterations, fewer multiplies are required per itera-

. tion to preconditicn POR(1) om the right than to precondition PCR symmetrically, as is

required for the latter method.

Of the thres preconditionings, TCDKR is nesrly always the most effective in terms of
both multiplies and iterations required. The effectivenem of preconditioning is much more
proacunced for the ooasymmetric Comvection-Diffusion Problems thaa for the symmetric
Hest Problems. Ia fact, for the latter class of probiems, MLTTOT for TCSSOR is frequeatly




<=v Frodtiem Jj=v PrO0.ea
Msthod ] -
s 10 18 20 2% 3¢ 3 ] 7 9
LAY 14,174 96 € rit} LaNg 239 93¢ “d [}] Tad 9
PCR TCSSOR [ 1) 138 198 297 300 338 [ 34 [ 1] 103 128
PCR TCDKR 89 92 110 180 166 197 38 L1 ] 71 82

POR Kat NOPRE 96 218 269 “@7 EEE] 652 42 8% 132 197
POR Ks) TCSSOR [ 24 118 201 2%2 306 360 as [1] 103 121
POR Ks! TCEKA 50 98 118 186 177 209 38 852 73 83
POR Ks] MOPRE 96 278 269 (3N $38 052 LF] LE] 132 197
POR Ks3 TC3SOR | 65 128 189 283 296 159 | & 65 102 122
POR Ks3 TCOKR (1] 95 11 182 169 203 5 71 8a
POR Ks$5 ROPRE 96 a7y 209 a1t $3% 652 (k] 85 132 197
POR KeS5 TCSSOR | 6a 127 191 283 291 381 w65 102 122
POR K285 TCDKR [X) 98 109 119 165 193 18 S 71 87

Jadle $.2.2.1: The total number of PCGPACK {terations, ITSTOT., used by LSODCG.V2
throughout the numerical {ntegration of the spatially~discretized 2.0 and 1-D
Hest Provlem on a mxm and mxmzIm grid, respectively.

=y Prodles jew rrooies
Method s [
5 10 18 20 25 13 3 S 7 9
rLR BUPRE LX) v I 354 kil LY E] LY o 13:4:3 {3
PCR TCSSOR 63 134 203 269 329 366 L1 62 102 114
PCR TCOKR AT 90 187 150 178 192 16 89 86 83

[FSK €1 NOPRE 121 293 390 888 609 983 | 69 a1 18T  2%0
JProR Ks1 TC3SOR 70 139 183 260 116 356 L1 (1] 99 12%

POR X=! TCDKR 49 92 150 139 177 198 38 49 87 81
POR Xs3 NOPRL LEN 479 e 55§ 768 860 [0 111 139 e
POR £23 TC3SOR 69 128 190 251 322 397 as 63 100 11
POR Ks3 TCODER a9 a8 187 138 178 207 3% 48 67 30
PON Ks5 NOPRE 124 <82 394 563 773 [ XY 59 107 138 230
POR K28 TCSSOR 69 123 187 27% 306 36a [} 83 99 110
POR K=8 TCDKR 48 86 186 138 172 208 3 a8 57 80

¢ 5.2.2.2: The totsl number of PCGPACK {terations, ITSTOT, wused by L3SODCG.V2
throughout the auserical (integration of the spatially-discretizead 2-D ana 3D
Convestion=D1iffusion Problem on a axm 2nd szaxa grid, respeatively.

<=V rrooLCHM d=w rroc.en8

Method ) )

b 10 1% 20 28 20 1 < hd a
FLR huPdl 11 N €3 F¥] “< Er k] ] e gw
PCR TCSSOR ] 14 1 18 E]) 28 [ 8 1R ] 13
PCR TCOKR [] 10 12 15 18 20 8 7 9 10
POR Kat NOPRE [ 20 45 33 LX) 50 ) 1 e 20
POR ka1 TCSSOR 10 13 16 17 23 26 [} [} 10 12
POR Ks? TCDKA T 11 A1) 17 23 23 [ 7 10 12
POR Ko3 NOPRL Tt 20 E1 ] 33 82 50 s 7 ta 20
POR Re3 TCSSOR 8 11 18 19 22 21 [] 8 1B ] 12
POR Ks3 TCOKR [} 9 18 17 20 22 ) T 9 11
FOI Ka% WOPIT L) 40 <5 33 ad 50 S b Q) 0
PON KeS TCSSOR 8 1" A1 18 3l 28 6 [} 1 12
POR KsS TCOKR [} 9 12 18 18 21 [] k4 9 12

2.2.1: The seximum nuader of PCGPACK (terations, ITSMAX, wused by LSODCG.V2
throughaut the numertaesl i(ategration of the spatiallyediscretized 2-) and 3-D Hest
Predlem on & sxm and szmts grid, respeetively.
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algedbraic systess

throughout

the

nuserical

Problem oft 3 axe and azsxa grid, respectively.

integration

E=v Fro0.en s=¥ FrODLER
Hethod [ a
] 10 15 20 25 30 K 5 7 9
PLUH NUPRe <0 LA RS 1] T S T80 Te 30 1Y) 3%
PCR TCSSOB [ ] n 18 17 19 28 7 8 11 11
PCR TCDRR [ 11 18 16 18 22 8 7 9 11
OR Ket NOPRE [k LEIE a7 80 F31] 12 23 30 2
i POR Xzt TCSSOR 7 18 17 19 21 25 7 9 10 12
POR Ks! TCDKR ] 1 19 18 18 2% 4 T 9 12
POR Ka3 NOPRE 18 [} [¥} 86 116 126 | 1@ &1 20 395
POR Ks3 TCS3OR 7 1" 15 17 23 28 [} 8 1 12
POR Ka? TCDKRR [] 10 19 16 18 21 L) § 9 11
POR Ks% ROPRE 18 1] 5e kk] 13 116 9 18 20 33
PFOR K25 TC3SOR 7 10 18 2 20 23 6 8 10 11
POR Ks§ TCOKR s 9 14 18 16 19 L] [] 9 11
Tabdbl 22.8: The nezimua number of PCGPACK iterations, ITSMAX., wused DOy LSODCG.V2
throughout the naumerical {integration of the spatiaslly-discretized 2.0 and 3-D
Convection=Diffusion Prodles on a aza and nxmsm grid, respectively.
&=w PPQOieR H s-v froc.em
Method - i *
5 10 18 20 29 20 . 2 s - [
Ut 10350 144300 XA AL] nb5cl< 16ov300 5119309 , L3359 LRRLRA! £- s3IV LTSI
Fex WOPRE ITe08 303230 675184 1889274 3700203  BUA6182 | 18887 1eails 605332 1889625,
PCR TCSSOA 80036 338918 1069956 2355255 §888810 7609396 Jr2a7 255252 1072048 2762856 4
PCR TCODKR 32828 237926 8367%1 1812001 25871382 3366975 29664 205788 795430 1981422
'y ML 28880  j2sTan 12693 1999272 4008328 7035182 16396 150990 6:9289 2009242 3
POR K21 TC3SOR 26988 190201 T25362 1619384 3071298 $199680 22%82 158088 672012 1717008 |
POR Ks1 TCDXR 21488 163218 8281368 968813 1823168 1090979 18881 13%082 $0878s 1256208 &
'GR Kal NOPARE 33668 829857 968982 eT19163 $63u4820 10003581 17708 173550 781329 2545302 )
POR Ks3 TCISOR asrs2 215738 g1a011 1921186 3725088 6585155 23542 169736 782158 1927360
P0R Ks3 TCDKR 22378 177258 472584 1102098 2061592 3628176 19282 181172 540618 1365608 &
POR Ke3 NOPRE 5884 4986485 1740646 330765 6985540 12558727 17790 183326 8648979 2907946
POR K28 TCSSOR | 29180 288015 2893818 2113869 8135312 718881 21788 178628 TTTITR 202%%20 |
200 xa8 TCORR | 22679 183237  aeiaag 1147828 2179768 3885289 | 191r>  tu2e28 562888 13ifi2s)
Isble $.2.2.5: The total nuaber of multiplies. NLTTOT. used by LSODES and LSODCG.V2 to selve the lineesr

of the spatislly-disaretized 2-D and 3-D HNeat

&=V Fro0.em J=v rT35.iex
Method - a I
] 10 15 20 2% 30 1 [} - LI
[T31x] T 1390 ITEE11] FEXERL] 3074V XI-TELT) FRRSETT] V196 k €23y C=vuig . PR Trs
X HOPRE V082 ’ . e832782 §328437 8478807 Q3436 212782 31,088 214149C
PCR TCS3OR 39819 328371 1093581 2959297 2865392 TTT2132 316517 281948 1062981 2538817
, PCR TCDKR 31804 233563 833065 1508499 2767118 8265265 31638 20516 T568072 1971107
! POR Ks' HOPRE 35901 345365 1049339 2656349 4856076 10572603 25386 209387 THTIIY 2527288 |
| POR Ks' TCSSOR 28191 223160 662082 1670319 3170280 §142792 22664 1584826 648710 1705685 ¢
| . POR Kest TCDER 21083 154627 $58636 92839 18275138 2877649 19918 128596 sTu8235 12095896 ¢
? PCR Ka3 NOPRE 53708 “a7681 1519823 3768229 8209009 13389083 | 27938 236983 831492 30266822
) POR Ks? TC3SOR 30099 228667 820678 1982808 3088588 730831S 23628 165056 729598 1738698 §
PCR Ks? TCOKR 22851 168812 622610 1983708 2120652 3679020 19894 133588 $12%5132 1304360 8
' 3K K3 WOPRL STada  Sa38T8 1789837 s1Saa0a 10867203 16729712 | 27046 255015 $35132 .542%2¢%
. PCR K% TC3SOR 10781 2376860 873010 28488617 a3e5352e 7678620 23992 169162 753790 1795587
SR Kef TLOKR 2209 167087 §72019 1099601 2273582 3979181 10894 13%8ud 531072 131682 ¢
Tabje 5.2.2.6: The tetal nusber of multiplies, WLTTOT, used dy LSODES amq L30DCG.V2 to soive the lincar
slgebrsie systems throughout the numericsl i{ntegration of the spatially~discretized 20 and :-d
Convestiondiffusion Problem ou 3 mam ond mxezm grid, respectively.
Nethed &=y Proo.e8 sev ProObLeR
b o
k 19 18 20 28 10 1 < ~
gziﬂ:g'lt ;; 4980 %% <e000 2io0% 33500 T et v —— f'
1833 338 LLLY] §ie7 . 11383 (1L 2R 1} & AR 1 ¥ ST
rce ft?ll 361 1821 3881 6241 9801 14161 | 33 2201 233; :§2§;‘
. 1628 T 45 104 15064 %83 23129 T
POR Ka1 TCORR | 13 1723 3931 7083 11083 15963 | 89 2883 ::«3 :;3:;
Pon &, NOPRE 1)) ELH ] ] 3] 3%y 12913 18888 575 2N ¥998 T ILy
Ka3 TCORR $17 2127 07 8ea? 13587 19567 601 2087 8317 17589
:g: KsS NOPRE S97 2832 L4 Aki 3882 18537 I3137% Y k4 ER kL 3T Y LEL A
Xad TCORR 52! 2871 Lxd L) 1021 16061 23171 713 38t 2717 29406
.~ Tet N
Ei%*iz§7*&;:: ;a: ;in':::tlo. STRTOT. required By the iinesr-equetion solvers in L3SODES and

1=D prodlems on s sxm and mzeze grid. respeatively.
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Piet 8.2.2.1: Graphs of m against ITSMAX for LSODCG.V2
with POR(1) preconditioned by (1) NOPRE, (2) TCSSOR, and
(3) TCDKR for the spatially-discretized 2-D Heat Probiem.

2.49

X
<3
o - ,
~ \V\
O)g \\G\
O @ w\\\\
® I I L
9.90 9.50 1.00 1.50.
log(m)

Plot £.2.2.2: Graphs of m agsinst ITSMAX (or LSODCG.V2
with FOR(1) preconditioned by (1) NOPRE, (2) TCSSUR, and
(3) TCDKR for the spatisily-discretized 2-D Convection-
Diffusion Problem.
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log (MLTTQT)
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Pist £2.2.3: Graphs of m against MLTTOT for (1) LSODES
and LSODCQ.V2 with POR(1) preconditioned by (2) NOFRE
and (3) TCDKR (or the spatially-discretized 2-D Heat Prob-
lem.
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Plot 5.2.2.4: Graphs of m sgainst MLTTOT [for (1) LSODES
snd LSODCQ.V2 with POR(1) preconditioned by (2) NOPRE
and (3) TCDKR for the spatisfly-discretized 3D llent Prob-
fem.
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Plet $.2.2.8: Graphs of m ageinst MLTTOT tor (1) LSODES
asd LSODCG.V2 with POR(1) preconditioned by (2) NOPRE
aad (3) TCDKR [or the spatially-discretized 2-D Convectioa-
Diffusion Problem.
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larger than for NOPRE for the same basic PCGPACK method, since the additional work
required to precondition is not offset by a sufficient reduction in the number of PCGPACK
iterations used throughout the integration. This is not the case for TCDKR. Although
NOPRE required fewer multiplies than TCDKR on some coarse grid problems, the difference
is never significant. Oa the other hand, TCDKR is frequently substantially more effective
than NOPRE in terms of both muitiplics snd iteraticas required by PCGPACK. Although
ITSMAX for TCDKR and TCSSOR are frequently close, ITSTOT for TCDKR is usually
significantly less than for TCSSOR, indicating that TCDKR is substantially more cffective
than TCSSOR on the large aumber of linear algebraic systems for which &, is small and the

spectrum of / —A,B,J is clustered around 1.

From the graphs of [TSMAX in Plots 522.1 and 5222, it can be seea that not only do
the preconditioned POR(1) methods require fewer PCGPACK iterations than POR(1) with no
preconditioning but also the difference grows exponeatially with m. Although not shown
here, graphs for ITSTOT are similar, but, in this case, TCDKR can be seea to be substantiaily
more effective than TCSSOR. Graphs of MLTTOT for POR(1) preconditioned by NOPRE
and TCDKR are shown in Plots 5223 to 522.6. Note that aot only is MLTTOT significantly
smailer for TCDKR than NOPRE, except on the cosrsest grids, but also the difference
betweea MLTTOT for these two preconditionings grows exponentially with m.

Now compare LSODES to LSODCG.V2 with POR(1) preconditioned by TCDKR.
Tables 5225 and 5225 and Plots 5223 to 52.2.6 reveal that LSODES requires fewer multi-
plies than LSODCG.V2 for the 2-D problems, except on the finest grid (m=30). However, the
difference decreases with m and sa extrapolation of the graphs in Plots $223 and 5225 sug-
gests that LSODCG.V2 with POR(1) preconditioned by TCDKR would become increasingly
more efficient than LSODES for these two 2-D problems oa flaer grids. For the two 3-D
prodlems with m=9, LSODES requires more than tea times as many multiplies as
LSODCG.V2 to soive the linear algedraic equations throughout the integration. Moreover,
from Plots 5224 and 3226, it is clear that this factor grows exponentially with m.
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This supports and extends our carlier obeervation besed on theoretical estimates of the
computational-work in §4 that iterative methods are significantly more efficient than direct
methods for wiving the sputially-discretized 3-D Heat Problem.

Table 522.7 and Plots $22.7 aad 5223 show that, for both the 2-D and 3-D problems,
STRTOT is significantly Iarger for LSODES than LSODCG.V2: for the 2-D problems with
m=30, LSODES requires approximately 3.7 times as much storage as LSODCG.V2 and, for the
3D problems with m=9, LSODES requires approximately 6.4 times as much storage as
LSODCG.V2. Moreover, for both the 2-D and 3-D problems, this factor grows exponentially

with m.

$.3. Suff Detest Probiems.

We used LSODE, LSODES, LSODCG.V], and LSODCG.V2 on an IBM 3033 computer
in double precision to solve the 30 Stiff Detest Probiems {27, 29]. Although these problems
sre not large, they do test the robustness of the inexact chord-Newton method and the associ-
ated iterative linear-cquation soivers in the two varisats of LSODCG.

For each of the four codes, we solved the Stiff Detest Problems using the BDFs with
exact Jacobians (MF=21) to aa absolute local error tolerance of ATOL = 1072, 107, 107%, and
107% (RTOL =0 and ITOL =1).

For LSODCG.V1 and LSODCG.V2, we used POR(S), the PCGPACK [21, 25] implemen-
tation of Orthomia(5) {20, 24), to soive ths linear algebraic systems of equations that arise in
the inexact chord-Newton method. We did not precondition POR(S) because, for maay of the
S:iff Detest Probiems, an incomplete factorization would maﬂyyieldt'hemfut«intin
of the amocisted Newton iterstion matrix and, consequeatly, POR(S) would generate the
ezact sojution to the linear aigedbraic equations in one iteration.

We med s stoppiag criterion of the form (2.33) with ¢ = 1, 25, and S for the solution
of the Unear algebraic systems arising in the inexact chord-Newton method. Since the Stiff
Detest Problems are small and the tolerance for the linear algebraic systems is lax, we allowed
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s maximum of S0 POR(5) iterations to solve each linear algebraic system.

We present our results for LSODE and LSODCG.V2 only. As in the previous section,
the results for LSODCG.V2 are generally better than those for LSODCG.V1, and the stra-
tegics used in LSODCG.V2 are closer to those in LSODE than those in LSODES.

In Tabies 531 and 532, respectively, we present the *normalized” pumber of fuaction
evaluations and Jacobian evaluations required by LSODE and LSODCG.V2 with r = .1, 25,
and S5 to soive each of the 30 Stiff Detest Problems to an abeolute global error tolerance of
Tol = 102,107, and 107 at the cad-point of the integration; in Table 533, we present the
*normalized” total aumber of POR(S) iterations required by LSODCG.V2 throughout the
integration. Thess normalized statistics were calculated by a new version of the Stiff Detest
Program which, as described in [26], first performs a least squares fit to

'S, Noststobat ervor)-iog(c)~ElogaToL, )P
for C and E, where, in this case, ATOL, = 107%,10™, 107, and 10~ and NTOL = 4. The Stiff
Detest Program thea performs a piecewise linear interpolation on the actual recorded values
of the costs to solve the IVP at ATOL, versus the corresponding expected global accuracy
Tol = C ATOL® to arrive at the normalized costs for an absolute global error tolerance of
Tol. (A consequence of this procedure is that the normalized function and Jacobian evalua-
tions are negative for one problem.)

A °°, "™, or °x" may occur as an eatry in place of s aumber in these tables. A °-° indi-
cates that Stitf Detest could not calculate the normalized statistics for this problem and toler-
soce based upon the sctual global errors incurred. A “* indicates that the method being
tested (LSODE or LSODCG.V2) could not solve the problem at that tolerance, and a °x” indi-
cates that Stiff Detest could not solve the problem at that tolerance. In addition, the 12 prob-
lems marked with a *#” hgve a Jacobian that is not negative-real over some subinterval of the
rangs of integration.

From the tabies, ws see that the number of function and Jacobian evalustions typically
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Japle 3.3.3: Nermalfized PCGPACK fterations for the Stiff Detest Probless.
increases with r. For the Jacobian evaluatizns, the increase is generally not signiScaat, but,

for the function evaluations, the increase is frequently 10% ot mare from one value of r to
the next. Oun the other hand, the aumber of POR(S) iterations typically decrcases with r by 2
factor of 10% or more from one value of r to the next. Hence, if 2 POR(S) iteration is less
expensive than a function evaluation, then, based upon these results, r=.]1 would usuaily be
the most cost effective of the three values considered. Oan the other hand, if a POR(S) itera-
tion is substantially more expensive than a fuaction evaluation (as is the czse for the problems
i the previous subsection), then, based upon these results, r=.5 would usually be the most
cost effective of the thres values comsidered. Thus, the choice of r is dependent upon the
class of IVPs soived.

Exzcept for problem CS, which has & Jacobian that is not aegative-real, LSODCG.V2,
with each of the values of ¢ considered, used fewer Jacobian evaluations than LSODE oa all




problems that were solved successfully by both codes. Morcover, for those IVPs having a
segative-real Jacobian, the number of Jacobiaa evaluations required differs by a factor of 2 to
S. This superiority of LSODCG.V2 over LSODE is a result of the strategy used in
LSODCG.V2 described sbove that permits it to update the scalar factor 4,8, in the Newtoa
iteration matrix 7 A, p,J whenever A, B, changes without re-evaluating the Jacobian, J. If we
had also removed from LSODCG.V2 the requirement inherited from LSODE that the Jaco-
bian be re-evalusted at least once cvery MSBP (=20) steps, thea LSODCG.V2 would have
used cvea fewer Jacobian cvaluations.

Now coasider the function cvaluations required by LSODE and LSODCG.V2 with r=.1
to solve the Stiff Detest Problems.

LSODCG.V2 failed to solve 4 of the Stiff Detest Problems (A2, D3, E4, F5) at
Tol = 10™2. Bach of these problems has a Jacobian that is not negative-real over some subin-
terval of the range of integration. However, except for problem F5 at Tol = 107¢,
LSODCG.V2 required fewer function evaluations than LSODE for these problems at
Tol = 10~ and 107°.

Of the remsining problems, LSODCG.V2 with r=.1 used substantially fewer fuaction
evaluations than LSODE for 7 of the Stiff Detest Problems (Al, A4, C1, C3, D1, D2, E3).
Again, this may be dus to LSODCG.V2's updating the scalar factor A, fi in the Newton itera-
tion matrix whenever A, f chaages resuiting io & more accurate Newton iteration matrix and a
more rapid convergence of the Newtoa iteration.

LSODE and LSODCG.V2 used spproximately the same aumber of function evaluations
on 11 of the Stiff Detest Problems (A3, B2, B3, B4, BS, C2, DS, D6, F2, F3, F5). It is worth
noting that the class B problems are of the form y“ = A y, where A is a coustant matrix wich
complex cigenvalues and, consequently, A is far from being symmetric.

LSODE used substantially fewer function evafuations than LSODCG.V2 on 7 problems
(@1, CA, CS, D4, E, F1, F2) each of which has a Jacobian that is aot negative-ceal over some

mbinterval of the rangs of integration.
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Thersfore, except for those probiems having a Jacobian that is not negative-real, the use
of an iterative linesr-equation solver did not cause the performance of LSODCG.V2 to
deteriorate relative to the uamodified code LSODE which incorporates a direct linear-
equation solver. In fact, LSODCG.V2 performs as well as or better than LSODE on all the
Stiff Detest Problems for which LSODCG.V?2 is applicable.

One final point is worth noting. From Tables $3.1 and 533, we see that, for many of
the Stiff Detest Probiems, particularly at the more stringent tolerances, an average of less than
oas PCGPACK iteration is required per inexact chord-Newton iteration. That is, for many of
the inexact chord-Newtoa iterations, the initial guess ~F (y}) for yi *!=y! satisfies (233) and
oo further PCGPACK iteratioas are required. Hence, when using an iterative linear-equation
solver in a stiff-ODE code in this way, we automatically obtain the benefit of the use of an
inexpensive predictor-corrector iteration when a2 more expemsive Newton iteration is gmot
required. Moreover, this eppears to have 2o deleterious effect upon the overall performance
of the stiff-ODE solver.

6. Cenclasiens.

Both the theoretical and aumerical results preseated in the preceding two sections show
that the use of iterative linear-equation solvers in stiff-ODE codes has the poteatial to
improve the efficisncy - in terms of both computational-work and storage - with which
significsat ciass of stiff IVPs baving large sperss Jacodbians can be solved. Moreover, these
results demonstrate the importance of precouditioning for Krylov subspace methods used in
#iff-ODE solvers.

The numerical results for both the linear and noalinear [VPs show that the stopping cri-
terion (2.33) for the inexzact chord-Newton iteration works well in practice for r €[1,5]. This
mmmmzmmmmmtwmmm&-onsnxvmmdmuum
very accurstely. Morsover, the initial gness ~F (y2) for the solution y2 *!~y? of the linear sy»-
tem proved to be quite effective ia practics, particularly during the initial transient where the

IVP is ot most mildly seiff.

oty pazens




Updating the scalar factor &, 8, in the Newton iteration matrix 7 ~A,p,J whesever 4,8,
changes without re-evaluating J, the spproxzimation to the Jacobian, reduces the aumber of
Newton iterstions and amociated function evaluations required throughout the course of the
pumerical integration with little added cost in a Riff-ODE code incorporating an iterstive
lincar-equation solver. Furthermore, this strategy of updating A, B, whenever it changes facil-
itates the decision whea to re-evaluate the Jacobian and, thus, helps to avoid wasted
computational-work. More generully, as mentioned in §2.2, the removal of the coastraint
imposed by the necessity to avoid tefactocing I —A, B,J in a stiff-ODE code employing a direct
{inear-equation solver may lead to other benefits in the choice of formuiss, strategies, and
heuristics for a stitf-ODE code incorporating aa iterstive lincar-cquation solver.

Most importaatly, the aumerical results demonatrate that stiff-ODE codes incorporating
iterative linear-equation solvers do not suffer a loss of robustness oa thoss IVPs for which the
Newton iteration matrix W3 is positive-real throughout the course of the asumerical integra-
tios. Note, though, that this restriction on W} is imposed by the iterative technique we chose
to solve the linesr systems: the restriction is not characteristic of all stiff-ODE codes incor-
porating iterstive linear-equation solvers. Ia particular, as mentioned carlier, thers exist itera-
tive linear-equation solvers that are gusranteed to couverge to the solution of the Newton sys-
tem (22.1) if all the eipnmna of W2 lic in the right-haif complex plane. As we argued in
2.1, it W2 does not satisfy this last restriction, thes the stepsize is almost surely too large and
should be reduced until this last restriction is satisfied to ensure a reliable numerical integra-
tion.

Hencs, it appears possible to develop a stiff-ODE code incorporating an iterative linear-
equation solver that, for a broad clas of IVPs, is as robust as a similar stiff-ODE code incor-
porating a direct linesr-equation solver, but more efficient than the latter code for a
significant subclass of problems having large sparse Jacobians. We plaa to continue to pursue

this investigate in the future.
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